52 research outputs found

    Ethical considerations related to drone use for environment and health research: A scoping review protocol

    Get PDF
    Introduction: The use of drones in environment and health research is a relatively new phenomenon. A principal research activity drones are used for is environmental monitoring, which can raise concerns in local communities. Existing ethical guidance for researchers is often not specific to drone technology and practices vary between research settings. Therefore, this scoping review aims to gather the evidence available on ethical considerations surrounding drone use as perceived by local communities, ethical considerations reported on by researchers implementing drone research, and published ethical guidance related to drone deployment. Methods and analysis: This scoping review will follow the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for scoping reviews (PRISMA-ScR) and the Joanna Briggs Institute (JBI) guidelines. The literature search will be conducted using academic databases and grey literature sources. After pilot testing the inclusion criteria and data extraction tool, two researchers will double-screen and then chart available evidence independently. A content analysis will be carried out to identify patterns of categories or terms used to describe ethical considerations related to drone usage for environmental monitoring in the literature using the R Package RQDA. Discrepancies in any phase of the project will be solved through consensus between the two reviewers. If consensus cannot be reached, a third arbitrator will be consulted. Ethics and dissemination: Ethical approval is not required; only secondary data will be used. This protocol is registered on the Open Science Framework (osf.io/a78et). The results will be disseminated through publication in a scientific journal and will be used to inform drone field campaigns in the Wellcome Trust funded HARMONIZE project. HARMONIZE aims to develop cost-effective and reproducible digital infrastructure for stakeholders in climate change hotspots in Latin America & the Caribbean and will use drone technology to collect data on fine scale landscape changes

    Development, environmental degradation, and disease spread in the Brazilian Amazon.

    Get PDF
    The Amazon is Brazil's greatest natural resource and invaluable to the rest of the world as a buffer against climate change. The recent election of Brazil's president brought disputes over development plans for the region back into the spotlight. Historically, the development model for the Amazon has focused on exploitation of natural resources, resulting in environmental degradation, particularly deforestation. Although considerable attention has focused on the long-term global cost of "losing the Amazon," too little attention has focused on the emergence and reemergence of vector-borne diseases that directly impact the local population, with spillover effects to other neighboring areas. We discuss the impact of Amazon development models on human health, with a focus on vector-borne disease risk. We outline policy actions that could mitigate these negative impacts while creating opportunities for environmentally sensitive economic activities

    COVID-19 trajectories among 57 million adults in England: a cohort study using electronic health records

    Get PDF
    BACKGROUND: Updatable estimates of COVID-19 onset, progression, and trajectories underpin pandemic mitigation efforts. To identify and characterise disease trajectories, we aimed to define and validate ten COVID-19 phenotypes from nationwide linked electronic health records (EHR) using an extensible framework. METHODS: In this cohort study, we used eight linked National Health Service (NHS) datasets for people in England alive on Jan 23, 2020. Data on COVID-19 testing, vaccination, primary and secondary care records, and death registrations were collected until Nov 30, 2021. We defined ten COVID-19 phenotypes reflecting clinically relevant stages of disease severity and encompassing five categories: positive SARS-CoV-2 test, primary care diagnosis, hospital admission, ventilation modality (four phenotypes), and death (three phenotypes). We constructed patient trajectories illustrating transition frequency and duration between phenotypes. Analyses were stratified by pandemic waves and vaccination status. FINDINGS: Among 57 032 174 individuals included in the cohort, 13 990 423 COVID-19 events were identified in 7 244 925 individuals, equating to an infection rate of 12·7% during the study period. Of 7 244 925 individuals, 460 737 (6·4%) were admitted to hospital and 158 020 (2·2%) died. Of 460 737 individuals who were admitted to hospital, 48 847 (10·6%) were admitted to the intensive care unit (ICU), 69 090 (15·0%) received non-invasive ventilation, and 25 928 (5·6%) received invasive ventilation. Among 384 135 patients who were admitted to hospital but did not require ventilation, mortality was higher in wave 1 (23 485 [30·4%] of 77 202 patients) than wave 2 (44 220 [23·1%] of 191 528 patients), but remained unchanged for patients admitted to the ICU. Mortality was highest among patients who received ventilatory support outside of the ICU in wave 1 (2569 [50·7%] of 5063 patients). 15 486 (9·8%) of 158 020 COVID-19-related deaths occurred within 28 days of the first COVID-19 event without a COVID-19 diagnoses on the death certificate. 10 884 (6·9%) of 158 020 deaths were identified exclusively from mortality data with no previous COVID-19 phenotype recorded. We observed longer patient trajectories in wave 2 than wave 1. INTERPRETATION: Our analyses illustrate the wide spectrum of disease trajectories as shown by differences in incidence, survival, and clinical pathways. We have provided a modular analytical framework that can be used to monitor the impact of the pandemic and generate evidence of clinical and policy relevance using multiple EHR sources. FUNDING: British Heart Foundation Data Science Centre, led by Health Data Research UK

    Closure and the Book of Virgil

    Get PDF

    Multi-ancestry genome-wide association meta-analysis of Parkinson?s disease

    Get PDF
    Although over 90 independent risk variants have been identified for Parkinson’s disease using genome-wide association studies, most studies have been performed in just one population at a time. Here we performed a large-scale multi-ancestry meta-analysis of Parkinson’s disease with 49,049 cases, 18,785 proxy cases and 2,458,063 controls including individuals of European, East Asian, Latin American and African ancestry. In a meta-analysis, we identified 78 independent genome-wide significant loci, including 12 potentially novel loci (MTF2, PIK3CA, ADD1, SYBU, IRS2, USP8, PIGL, FASN, MYLK2, USP25, EP300 and PPP6R2) and fine-mapped 6 putative causal variants at 6 known PD loci. By combining our results with publicly available eQTL data, we identified 25 putative risk genes in these novel loci whose expression is associated with PD risk. This work lays the groundwork for future efforts aimed at identifying PD loci in non-European populations

    Nitrate Reductase in Barley Roots under Sterile, Low Oxygen Conditions

    No full text
    • …
    corecore