90 research outputs found

    History and Outlook for Farm Bill Conservation Programs

    Get PDF
    Agricultural and Food Policy,

    INTEGRATED ASSESSMENT OF ENVIRONMENTAL EFFECTS FROM AGRICULTURAL PRODUCTION

    Get PDF
    Agriculture's impact on the environment is a complex research problem. A challenge to future economic research is to account for the interrelationship between agricultural production activities, soil productivity, erosion, and water quality. It will become increasingly important to determine not only the economic consequences, but also the environmental effectiveness of alternative policies aimed at improving resource use and quality. The application of biophysical simulation models to environmental quality problems provides a means to better understand the complex interaction between agricultural production and environmental quality.Environmental Economics and Policy,

    Communication Strategy: Does the Two-Step Still Work?

    Get PDF
    Much of our work in cooperative extension deals with the transfer of information or technology to clientele. Therefore, it is extremely important that we use the most effective and efficient means possible in carrying out this task

    "GREEN TAXES": IMPACTS ON NATIONAL INCOME, SOCIAL WELFARE, AND ENVIRONMENTAL QUALITY

    Get PDF
    Two taxation schemes were designed to be included in a multi-regional multi-sectoral General Equilibrium model for reducing the use of commercial fertilizers, with the goal of alleviating surface water pollution. Under the 500% tax rate, results showed that 0.1% of the national income was given up in order to exchange for a 3% reduction in the fertilizer application used as an intermediate input. Furthermore environmental quality would be improved by 3%, if a linear relationship existed between the changes in intermediate fertilizer use and the improvement in environmental quality.Environmental Economics and Policy,

    Prevention of child behavior problems through universal implementation of a group behavioral family intervention.

    Get PDF
    The aim of this mental health promotion initiative was to evaluate the effectiveness of a universally delivered group behavioral family intervention (BFI) in preventing behavior problems in children. This study investigates the transferability of an efficacious clinical program to a universal prevention intervention delivered through child and community health services targeting parents of preschoolers within a metropolitan health region. A quasiexperimental two-group (BFI, n=804 vs. Comparison group, n=806) longitudinal design followed preschool aged children and their parents over a 2-year period. BFI was associated with significant reductions in parent-reported levels of dysfunctional parenting and parent-reported levels of child behavior problems. Effect sizes on child behavior problems ranged from large (.83) to moderate (.47). Positive and significant effects were also observed in parent mental health, marital adjustment, and levels of child rearing conflict. Findings are discussed with respect to their implication for significant population reductions in child behavior problems as well as the pragmatic challenges for prevention science in encouraging both the evaluation and uptake of preventive initiatives in real world settings

    A C19MC-LIN28A-MYCN Oncogenic Circuit Driven by Hijacked Super-enhancers Is a Distinct Therapeutic Vulnerability in ETMRs: A Lethal Brain Tumor

    Get PDF
    © 2019 Elsevier Inc. Embryonal tumors with multilayered rosettes (ETMRs) are highly lethal infant brain cancers with characteristic amplification of Chr19q13.41 miRNA cluster (C19MC) and enrichment of pluripotency factor LIN28A. Here we investigated C19MC oncogenic mechanisms and discovered a C19MC-LIN28A-MYCN circuit fueled by multiple complex regulatory loops including an MYCN core transcriptional network and super-enhancers resulting from long-range MYCN DNA interactions and C19MC gene fusions. Our data show that this powerful oncogenic circuit, which entraps an early neural lineage network, is potently abrogated by bromodomain inhibitor JQ1, leading to ETMR cell death. Sin-Chan et al. uncover a C19MC-LIN28A-MYCN super-enhancer-dependent oncogenic circuit in embryonal tumors with multilayered rosettes (ETMRs). The circuit entraps an early neural lineage network to sustain embryonic epigenetic programming and is vulnerable to bromodomain inhibition, which promotes ETMR cell death

    Assessment and validation of a suite of reverse transcription-quantitative PCR reference genes for analyses of density-dependent behavioural plasticity in the Australian plague locust

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Australian plague locust, <it>Chortoicetes terminifera</it>, is among the most promising species to unravel the suites of genes underling the density-dependent shift from shy and cryptic solitarious behaviour to the highly active and aggregating gregarious behaviour that is characteristic of locusts. This is because it lacks many of the major phenotypic changes in colour and morphology that accompany phase change in other locust species. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is the most sensitive method available for determining changes in gene expression. However, to accurately monitor the expression of target genes, it is essential to select an appropriate normalization strategy to control for non-specific variation between samples. Here we identify eight potential reference genes and examine their expression stability at different rearing density treatments in neural tissue of the Australian plague locust.</p> <p>Results</p> <p>Taking advantage of the new orthologous DNA sequences available in locusts, we developed primers for genes encoding 18SrRNA, ribosomal protein L32 (RpL32), armadillo (Arm), actin 5C (Actin), succinate dehydrogenase (SDHa), glyceraldehyde-3P-dehydrogenase (GAPDH), elongation factor 1 alpha (EF1a) and annexin IX (AnnIX). The relative transcription levels of these eight genes were then analyzed in three treatment groups differing in rearing density (isolated, short- and long-term crowded), each made up of five pools of four neural tissue samples from 5<sup>th </sup>instar nymphs. SDHa and GAPDH, which are both involved in metabolic pathways, were identified as the least stable in expression levels, challenging their usefulness in normalization. Based on calculations performed with the geNorm and NormFinder programs, the best combination of two genes for normalization of gene expression data following crowding in the Australian plague locust was EF1a and Arm. We applied their use to studying a target gene that encodes a Ca<sup>2+ </sup>binding glycoprotein, <it>SPARC</it>, which was previously found to be up-regulated in brains of gregarious desert locusts, <it>Schistocerca gregaria</it>. Interestingly, expression of this gene did not vary with rearing density in the same way in brains of the two locust species. Unlike <it>S. gregaria</it>, there was no effect of any crowding treatment in the Australian plague locust.</p> <p>Conclusion</p> <p>Arm and EF1a is the most stably expressed combination of two reference genes of the eight examined for reliable normalization of RT-qPCR assays studying density-dependent behavioural change in the Australian plague locust. Such normalization allowed us to show that <it>C. terminifera </it>crowding did not change the neuronal expression of the <it>SPARC </it>gene, a gregarious phase-specific gene identified in brains of the desert locust, <it>S. gregaria</it>. Such comparative results on density-dependent gene regulation provide insights into the evolution of gregarious behaviour and mass migration of locusts. The eight identified genes we evaluated are also candidates as normalization genes for use in experiments involving other Oedipodinae species, but the rank order of gene stability must necessarily be determined on a case-by-case basis.</p

    Discovery of a chemical probe for the L3MBTL3 methyllysine reader domain

    Get PDF
    We describe the discovery of UNC1215, a potent and selective chemical probe for the methyl-lysine (Kme) reading function of L3MBTL3, a member of the malignant brain tumor (MBT) family of chromatin interacting transcriptional repressors. UNC1215 binds L3MBTL3 with a Kd of 120 nM, competitively displacing mono- or dimethyl-lysine containing peptides, and is greater than 50-fold selective versus other members of the MBT family while also demonstrating selectivity against more than 200 other reader domains examined. X-ray crystallography identified a novel 2:2 polyvalent mode of interaction. In cells, UNC1215 is non-toxic and binds directly to L3MBTL3 via the Kme-binding pocket of the MBT domains. UNC1215 increases the cellular mobility of GFP-L3MBTL3 fusion proteins and point mutants that disrupt the Kme binding function of GFP-L3MBTL3 phenocopy the effects of UNC1215. Finally, UNC1215 demonstrates a novel Kme-dependent interaction of L3MBTL3 with BCLAF1, a protein implicated in DNA damage repair and apoptosis

    A chemical probe selectively inhibits G9a and GLP methyltransferase activity in cells

    Get PDF
    Protein lysine methyltransferases G9a and GLP modulate the transcriptional repression of a variety of genes via dimethylation of Lys9 on histone H3 (H3K9me2) as well as dimethylation of non-histone targets. Here we report the discovery of UNC0638, an inhibitor of G9a and GLP with excellent potency and selectivity over a wide range of epigenetic and non-epigenetic targets. UNC0638 treatment of a variety of cell lines resulted in lower global H3K9me2 levels, equivalent to levels observed for small hairpin RNA knockdown of G9a and GLP with the functional potency of UNC0638 being well separated from its toxicity. UNC0638 markedly reduced the clonogenicity of MCF7 cells, reduced the abundance of H3K9me2 marks at promoters of known G9a-regulated endogenous genes and disproportionately affected several genomic loci encoding microRNAs. In mouse embryonic stem cells, UNC0638 reactivated G9a-silenced genes and a retroviral reporter gene in a concentration-dependent manner without promoting differentiation

    Association between plasma phospholipid saturated fatty acids and metabolic markers of lipid, hepatic, inflammation and glycaemic pathways in eight European countries: a cross-sectional analysis in the EPIC-InterAct study.

    Get PDF
    BACKGROUND: Accumulating evidence suggests that individual circulating saturated fatty acids (SFAs) are heterogeneous in their associations with cardio-metabolic diseases, but evidence about associations of SFAs with metabolic markers of different pathogenic pathways is limited. We aimed to examine the associations between plasma phospholipid SFAs and the metabolic markers of lipid, hepatic, glycaemic and inflammation pathways. METHODS: We measured nine individual plasma phospholipid SFAs and derived three SFA groups (odd-chain: C15:0 + C17:0, even-chain: C14:0 + C16:0 + C18:0, and very-long-chain: C20:0 + C22:0 + C23:0 + C24:0) in individuals from the subcohort of the European Prospective Investigation into Cancer and Nutrition (EPIC)-InterAct case-cohort study across eight European countries. Using linear regression in 15,919 subcohort members, adjusted for potential confounders and corrected for multiple testing, we examined cross-sectional associations of SFAs with 13 metabolic markers. Multiplicative interactions of the three SFA groups with pre-specified factors, including body mass index (BMI) and alcohol consumption, were tested. RESULTS: Higher levels of odd-chain SFA group were associated with lower levels of major lipids (total cholesterol (TC), triglycerides, apolipoprotein A-1 (ApoA1), apolipoprotein B (ApoB)) and hepatic markers (alanine transaminase (ALT), aspartate transaminase (AST), gamma-glutamyl transferase (GGT)). Higher even-chain SFA group levels were associated with higher levels of low-density lipoprotein cholesterol (LDL-C), TC/high-density lipoprotein cholesterol (HDL-C) ratio, triglycerides, ApoB, ApoB/A1 ratio, ALT, AST, GGT and CRP, and lower levels of HDL-C and ApoA1. Very-long-chain SFA group levels showed inverse associations with triglycerides, ApoA1 and GGT, and positive associations with TC, LDL-C, TC/HDL-C, ApoB and ApoB/A1. Associations were generally stronger at higher levels of BMI or alcohol consumption. CONCLUSIONS: Subtypes of SFAs are associated in a differential way with metabolic markers of lipid metabolism, liver function and chronic inflammation, suggesting that odd-chain SFAs are associated with lower metabolic risk and even-chain SFAs with adverse metabolic risk, whereas mixed findings were obtained for very-long-chain SFAs. The clinical and biochemical implications of these findings may vary by adiposity and alcohol intake
    corecore