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Abstract

We describe the discovery of UNC1215, a potent and selective chemical probe for the methyl-

lysine (Kme) reading function of L3MBTL3, a member of the malignant brain tumor (MBT) 

family of chromatin interacting transcriptional repressors. UNC1215 binds L3MBTL3 with a Kd 

of 120 nM, competitively displacing mono- or dimethyl-lysine containing peptides, and is greater 

than 50-fold selective versus other members of the MBT family while also demonstrating 

selectivity against more than 200 other reader domains examined. X-ray crystallography identified 

a novel 2:2 polyvalent mode of interaction. In cells, UNC1215 is non-toxic and binds directly to 

L3MBTL3 via the Kme-binding pocket of the MBT domains. UNC1215 increases the cellular 

mobility of GFP-L3MBTL3 fusion proteins and point mutants that disrupt the Kme binding 

function of GFP-L3MBTL3 phenocopy the effects of UNC1215. Finally, UNC1215 demonstrates 

a novel Kme-dependent interaction of L3MBTL3 with BCLAF1, a protein implicated in DNA 

damage repair and apoptosis.

The post-translational modification of lysine residues by acetylation and methylation plays a 

central role in chromatin function, primarily through the creation of binding sites for the 

readers of these marks.1,2 While acetylation of lysine eliminates the residue’s positive 

charge, methylation is a more subtle modification, shifting the chemical properties of lysine 

toward a more diffuse, polarizable positive charge as methylation proceeds from 

monomethyl (Kme1) to trimethyl (Kme3).3,4 Recently, small molecule probes of 

bromodomains, the readers of acetylated lysine, have been reported, and it would be difficult 

to overstate the impact of these compounds on the understanding of critical gene 

transcription events such as regulation of the c-myc oncogene.5–7 While the current 

repertoire of acetyl lysine readers in the human genome is limited primarily to the 57 

structurally homologous bromodomains and possibly a subset of plant homeodomains 

(PHDs)8, there are more than 200 methyl-lysine reader domains described within several 

protein families: PHDs; the so-called ‘royal family’ made up of Tudor, Agenet, chromo, 

PWWP and MBT domains; and the WD40 repeat proteins, WDR5 and EED.9,10 This large 

Kme reader family seems destined to expand further as research in epigenetics continues.11 

A unifying feature of all of these domains is the existence of an “aromatic cage” that 

comprises the Kme binding pocket.12,13 While computational analysis suggests that this 

target-class has substantial druggability13 and we have successfully identified several weak 

and nonspecific small molecule ligands for MBT domains,14,15 no high-quality small 

molecule chemical probes16 have been reported for any Kme reader domain to date.

MBT domains selectively recognize mono and dimethyl-lysine versus unmethylated and 

trimethylated lysine and have been functionally associated with repression of gene 

expression, while their misregulation has been shown to contribute to various disease 

phenotypes.17,18 For example, SCML2, L3MBTL2, and L3MBTL3 were found to be 

homozygously deleted in patients with meduloblastomas,19 while MBTD1, L3MBTL1, and 

L3MBTL3 play a role in hematopoiesis.20–23 Some of the human MBT proteins are also 

known to be part of larger chromatin remodeling complexes. Recently, a family-wide 
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systematic analysis of MBT-histone interactions was reported, suggesting that some MBT 

domains recognize methyl-lysine histone peptides in a sequence-selective fashion, while 

others, such as L3MBTL3, are more promiscuous.24

The discovery of the first small molecule probe to a previously untargeted protein domain is 

often a significant challenge, especially for domains that mediate ‘protein-protein’ 

interactions. Herein we report the discovery and characterization of UNC1215 (1) as a first 

in class chemical probe for the Kme1,2 reading function of L3MBTL3, a relatively 

uncharacterized member of the human MBT family.

RESULTS

Discovery of a potent L3MBTL3 inhibitor, UNC1215

Our work toward chemical probes for Kme binding domains initially focused on MBT 

domains due to the potential druggability of their ‘cavity insertion’ mode of Kme 

recognition that buries most of the lysine side-chain in contrast to the more solvent exposed, 

‘surface recognition’ mode of many other Kme readers.12,13 We were also intrigued by the 

potential polyvalency of MBT domains due to the presence of multiple repeats within each 

of the nine human MBT domain containing proteins, although no definitive evidence for 

polyvalent binding to histone peptides was available.25 As our first ligands for L3MBTL1 

exhibited only modest affinities (Kd = 5 μM)15, we designed a series of ligands that 

incorporated two Kme mimics in the hope that higher affinity might result for Kme binders 

such as 53BP1, which also recognizes an adjacent unmodified arginine in addition to the 

H4K20me2 modification.26 Towards this end, we synthesized a series of dibasic 

compounds, including UNC1021 (2) (Fig. 1a). While the affinity of UNC1021 for 53BP1 

remained in the micromolar range, our target-class cross-screening approach revealed high 

affinity for L3MBTL3 (Supplementary Results, Supplementary Table 1). A series of 

structure-activity relationship (SAR) studies aimed at improving affinity and cellular activity 

towards L3MBTL3 led us to append an aniline ring to the core of the molecule, resulting in 

UNC1215 (Fig. 1a). The IC50 of UNC1215 for L3MBTL3 was 40 nM as determined by an 

AlphaScreen methylated histone peptide competition assay (Supplementary Table 1 and 

Supplementary Fig. 1),27 and the direct binding affinity of UNC1215 was confirmed by 

isothermal titration calorimetry (ITC), yielding a Kd of 120 nM (Fig. 1b). Given the novelty 

and high-affinity of UNC1215 for L3MBTL3, we pursued its characterization as a potential 

chemical probe.16

Based on previous MBT structure activity relationships (SAR) that established size 

constraints for the Kme binding pocket,14 we also synthesized UNC1079 (3) (Fig. 1a), the 

piperidine analog of UNC1021, as a structurally similar but significantly less potent 

inhibitor for use as a negative control in cellular studies. The low anticipated affinity of 

UNC1079 was confirmed, as it demonstrated an activity versus L3MBTL3 of > 10 μM by 

AlphaScreen, which is >1000-fold weaker than UNC1215. UNC1079 also displayed weak 

binding by ITC (Supplementary Fig. 2).
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Mechanism of action studies

MBT domains utilize an aromatic cage that has evolved to recognize Kme1,2 modifications 

in a relatively non-sequence selective fashion.28,29 In addition to this π-cation binding mode, 

a critical aspartic acid residue in the binding pocket hydrogen bonds to the protonated 

amine. L3MBTL3 contains three tandem MBT domain repeats (Fig. 1c,d), and we sought to 

determine whether only one or more than one of the potential Kme binding sites was 

interacting with UNC1215. The aspartic acid that mediates Kme binding of the second 

domain in the closely related Kme reader, L3MBTL1, is conserved in L3MBTL3 (D381), 

and it was predicted that this key residue similarly hydrogen bonds to one of the pyrrolidine 

nitrogens of UNC1215. Using a construct containing the 3 MBT domains of L3MBTL3 

(3MBT), a D381A mutant was prepared and its interaction with UNC1215 was examined by 

ITC (Fig. 1b), revealing that binding to UNC1215 is completely abolished. Interestingly, 

when the corresponding mutation was made to the first domain of 3MBT (D274A), binding 

was diminished about 30-fold relative to wildtype (Fig. 1b), suggesting that domain 1 

contributes to the potency of UNC1215 for wild-type L3MBTL3. The corresponding 

aspartic acid in domain 3 (D485A) was also mutated, but the resulting His-tagged protein 

did not bind to nickel affinity resin, and was therefore not successfully purified. As 

UNC1215 exhibits about a 75-fold selectivity for L3MBTL3 over L3MBTL1, this further 

suggested that the two highly homologous proteins differ significantly in their mode of 

recognition of UNC1215.

Co-crystal structure of the UNC1215-L3MBTL3 complex

To further investigate the interaction of UNC1215 with L3MBTL3, an X-ray crystal 

structure of the complex was solved at a resolution of 2.6 Å, providing structural insight into 

the binding mode (Fig. 2). Like L3MBTL1, L3MBTL3 presents a three-leaved propeller 

overall architecture with all potential ligand binding pockets (domains 1–3) facing in the 

same direction.30 Surprisingly, the co-crystal structure revealed a novel 2:2 complex of 

UNC1215-L3MBTL3, involving both domain 1 and domain 2 binding pockets, which is 

consistent with the affinities of the aromatic cage mutants discussed above. Analysis of the 

X-ray structure reveals that UNC1215 binding is primarily mediated by interaction with the 

aromatic cage of domain 2, consisting of F387, F405, W408, and Y412, and via a key 

hydrogen bond between the pyrrolidine nitrogen and D381. While the pyrrolidine amine 

meta to the aniline substituent is deeply buried in domain 2 of one L3MBTL3 protein 

(similar to the mono-basic, UNC669/L3MBTL1 structure15), the pyrrolidine ortho to the 

aniline bridges the two proteins by interacting with domain 1 of a second L3MBTL3 

molecule. Another UNC1215 molecule then binds in a reciprocal fashion to the remaining 

available domain 2 and domain 1 binding pockets, resulting in the observed 2:2 dimer. 

While the D381A mutant completely abrogates binding (Fig. 1b), mutagenesis of the 

aromatic cage residue F387 to alanine weakens binding about 10-fold (Kd = 1.0 μM, 

Supplementary Fig. 2). The X-ray structure also suggests a possible stacking interaction 

between UNC1215 and H277, and upon mutagenesis, H277A 3MBT showed a marked loss 

of affinity relative to wild-type as measured by ITC (Supplementary Fig. 2). Size exclusion 

chromatography indicated that in the absence of compound, 3MBT migrates as a monomer, 

but in the presence of compound, 3MBT behaves as a dimer (Supplementary Fig. 3). This 
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strongly supports the mechanism of inhibition observed in the crystal structure as being 

operative in solution as well as in the crystal lattice.

UNC1215 is a selective inhibitor of L3MBTL3

To evaluate the selectivity of UNC1215, the compound’s affinity for a wide range of 

epigenetic and non-epigenetic targets was surveyed (Supplementary Table 2). First, the 

selectivity against a small set of Kme readers was evaluated by AlphaScreen, including both 

related proteins from the MBT family as well as representative proteins from other Kme 

reader families. The selectivity of UNC1215 for L3MBTL3 over other MBT domain 

containing proteins (L3MBTL4, L3MBTL1, MBTD1, and SFMBT) was 50-fold or greater, 

while 100-fold selectivity was observed for L3MBTL3 over the tandem Tudor domain of 

53BP1 which also recognizes H4K20me2 (Supplementary Table 1). UNC1215 showed no 

activity at concentrations up to 30 μM against the Tandem Tudor domain of UHRF1, the 

chromodomain of CBX7, or the PHD domain of JARID1A.

In order to better assess the selectivity of UNC1215 against Kme and methylarginine reader 

proteins, protein microarrays containing over 250 protein domains of chromatin-associated 

effector proteins spotted in duplicate onto a nitrocellulose-coated membrane were probed 

with a biotinylated analog of UNC1215 (Fig. 3a, Supplementary Fig. 4).31 Biotin was 

covalently attached to UNC1215 via a PEG linker so as to minimize potential hydrophobic 

linker effects, and high-affinity binding of the biotinylated analog to L3MBTL3 was 

confirmed by ITC (Supplementary Fig. 2). In order to visualize the binding interactions of 

the compound after incubation, the membrane was probed with fluorescently tagged 

streptavidin, revealing positive interactions with only a small number of proteins including 

the tudor and/or MBT domains of L3MBTL1, PHF20, PHF20L1, 53BP1, and SPF30(S.p), 

as well as the chromodomain MRG15. Interestingly, with the exception of MRG15, each is a 

known H4K20me1 or H4K20me2 reader, although other H4K20me2 reader domains such as 

the BAH domain of ORC111 did not bind UNC1215 (Supplementary Fig. 5). This was 

confirmed by subsequently probing the array with a fluorescent H4K20me2 peptide, and as 

expected, binding was observed to each of these proteins, excluding MRG15 

(Supplementary Fig. 4). It must be noted that in the case of both UNC1215 and H4K20me2, 

binding to the MBT domains of L3MBTL3 was not observed, likely due to instability or 

misfolding of the protein on the nitrocellulose membrane or precipitation upon freezing and 

thawing. Therefore, selectivity estimates from this technique can only be made for the 

readers where a positive interaction with a histone control peptide is observed.

The affinity of proteins positive for binding to biotinylated-UNC1215 on the membrane 

array was next quantified by ITC. Both L3MBTL1 and the Tudor domain of PHF20 bind 

UNC1215 weakly by ITC, with Kd values of 9.4 ± 1.7 μM and 5.6 ± 0.5 μM respectively, 

while other representative binding proteins had even lower affinities (Supplementary Table 

2, Supplementary Fig. 2). The interaction of UNC1215 with purified L3MBTL3, 

L3MBTL1, 53BP1, and the Tudor domain of PHF20, as well as selectivity versus SPF30 

and HP1γ, was also confirmed by pull-down experiments with biotinylated-UNC1215 

(Supplementary Fig. 5). Competition studies in an H4K20me2 pull-down experiment also 

demonstrated nanomolar potency for antagonism of L3MBTL3 pull-down by UNC1215; 
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however, micromolar antagonism was observed in the case of 53BP1 (Fig. 3b). These 

studies confirm the potency and high degree of selectivity of UNC1215 for L3MBTL3 over 

other available methyl-lysine and methyl-arginine binding proteins.

The selectivity of UNC1215 for L3MBTL3 over other epigenetic targets was also evaluated. 

Notably, UNC1215 was inactive against a panel of histone methyltransferases as evaluated 

by monitoring the transfer of a radioactive methyl group from S-adenosylmethionine (SAM) 

to lysine or arginine (Supplementary Fig. 6). Furthermore, the stabilization of various 

bromodomains and lysine demethylases by UNC1215 was analyzed by differential scanning 

fluorimetry, in each case producing Tm shifts <0.5 °C, consistent with very weak or no 

interaction. Due to the distinctly ‘aminergic’ pharmacophore of UNC1215, we also surveyed 

a panel of G-protein coupled receptors (GPCRs) and ion channels (Supplementary Table 5). 

Specifically, we tested UNC1215 in the US National Institute of Mental Health’s 

Psychoactive Drug Screening Program (PDSP) Selectivity Panel, revealing >50% inhibition 

of 8 targets in the panel at 10 μM. Using a radioligand competition binding assay, Ki values 

were determined for each of the 8 initial hits, revealing affinity for M1 (Ki = 97 nM) and M2 

(Ki = 72 nM) muscarinic receptors. As radioligand competition binding assays can 

overestimate functional potencies, functional assays were performed for M1 and M2 

muscarinic receptors; UNC1215 had no agonist activity against either target and weak 

antagonist activity against M1 (IC50 = 3.5 μM) and M2 (40% inhibition at 30 μM) 

(Supplementary Fig. 7). Lastly, UNC1215 was tested against a panel of 50 diverse kinases 

and only showed weak potency against FLT3 (64% inhibition at 10 μM). Thus, we conclude 

that within the molecular targets surveyed, UNC1215 is highly selective for L3MBTL3, and 

that any effects observed in cells upon treatment with UNC1215 but absent upon treatment 

with the negative control, UNC1079, could reasonably be attributed to antagonism of Kme 

binding by L3MBTL3.

UNC1215 is a potent antagonist of L3MBTL3 in cells

Prior to assessing the cellular potency of UNC1215, we evaluated the cytotoxicity of both 

UNC1215 and the negative control compound UNC1079 to ensure future cellular studies 

would not be limited by compound toxicity. Both compounds showed no observable level of 

cytotoxicity up to 100 μM as measured by a CellTiter-Glo luminescent cell viability assay 

(Supplementary Fig. 9). Furthermore, incubation of UNC1215 with or without HEK293 

cells in cell media for 72 hours did not produce degradation products of UNC1215, 

indicating high stability under cellular assay conditions.

While the cellular function of L3MBTL3 is largely unknown, MBT domains are thought to 

assist in targeting chromatin regulatory complexes to appropriate genomic loci via binding 

to specific mono- or dimethylated lysine residues within histone tails.32–36 We reasoned that 

UNC1215 would compete with histone Kme marks or other Kme sites in chromatin and 

thereby “release” L3MBTL3 from the immobile chromatin component of the nucleus. In 

order to test this hypothesis, we performed fluorescence recovery after photobleaching 

(FRAP) experiments to assess the relative cellular mobility of the MBT domains of 

L3MBTL3 in the presence and absence of UNC1215. Human embryonic kidney 293 cells 

transfected with a GFP fusion protein of the 3 MBT domains of L3MBTL3 (GFP-3MBT) 

James et al. Page 6

Nat Chem Biol. Author manuscript; available in PMC 2013 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



demonstrated a time-dependent recovery of fluorescence intensity following photobleaching 

(Fig. 4a). Treatment with UNC1215 decreased the recovery time in a dose responsive 

manner, resulting in an estimated EC50 of 50–100 nM and indicating that UNC1215 

promotes diffusibility of GFP-3MBT within the nucleus. These results suggest that 

UNC1215 competes with cellular factors for binding of the MBT domains at concentrations 

well below 1 μM. Importantly, the effects on GFP-3MBT mobility are limited to UNC1215, 

as UNC1079 showed no effect on FRAP at concentrations up to 0.1 mM. Furthermore, 

GFP-3MBT containing either the domain 2 D381A mutation or the domain 1 D274A 

mutation also showed higher mobility than wild-type protein (Supplementary Fig. 10 and 

Supplementary Table 6), providing additional evidence that both domains are engaged in 

chromatin recognition and that the binding mode observed in the co-crystal structure may be 

relevant to L3MBTL3 binding to methylated protein targets in cells. The magnitude of the 

effect of these mutations on mobility also mimicked their effect on UNC1215 binding (Fig. 

1b). In addition, in HEK293 cells co-transfected with GFP-3MBT and flag-3MBT, 

GFP-3MBT co-immunoprecipitated with flag-3MBT in both the absence and presence of 

UNC1215 (Supplementary Fig. 20). Interestingly, this result supports the notion that the 

MBT domains may have a tendency to dimerize in cells.

In U2OS and 293 cells, the N-terminal GFP-3MBT fusion protein and the C-terminal 

3MBT-GFP fusion protein were both found to localize to the nucleus and form distinct 

nuclear foci (Fig. 4b and Supplementary Fig. 11). However, the m-Cherry 3MBT fusion 

protein does form foci under similar conditions (Supplementary Fig. 11). Although the 

physiological relevance of the GFP-3MBT foci are not known, in order to further probe the 

ability of UNC1215 to promote a cellular response, we examined the capacity of UNC1215 

to inhibit GFP-3MBT foci formation. UNC1215 showed potent effects on the subnuclear 

localization of GFP-3MBT, demonstrating an IC50 of approximately 500 nM for disruption 

of foci formation (Fig. 4b, Supplementary Fig. 12). UNC1215 did not affect the overall level 

of GFP-3MBT fusion proteins. The inactive compound UNC1079 was ineffective in 

reducing the extent of foci formation, while the domain 2 D381A mutant showed no foci 

formation and the domain 1 D274 mutant showed a reduction in foci formation of about 50 

percent (Fig. 4c and Supplementary Fig. 13). Thus, although the foci formation is restricted 

to specific GFP fusions of 3MBT, inhibition by UNC1215 phenocopies the L3MBTL3 

mutants, consistent with a cellular mechanism in which UNC1215 antagonizes the 

interaction of the MBT domains with one or more cellular Kme targets. The fact that both 

domain 1 and domain 2 aromatic cage mutants disrupt foci formation again supports the 

hypothesis that both domains are engaged in recognition of protein targets in vivo and that 

UNC1215 effectively competes with these interactions.

Interestingly, in 293 or U2OS cells transfected with an N-terminal GFP fusion of the full 

length L3MBTL3 protein (GFP-FLMBT), distinct foci-like subnuclear localization was 

observed and these foci could no longer be disrupted by treatment with UNC1215 (Fig. 4b). 

In this case, neither the domain 1 nor the domain 2 mutant showed a decrease in the extent 

of nuclear foci formation in the context of the full length protein relative to wildtype 

(Supplementary Fig. 13). The full length C-terminal L3MBTL3 fusion localized to the 

DNA-rich regions of the nucleus and not the nucleolus (Supplementary Fig. 11). Since 
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protein tags and other domains or regions of the full length protein appear to contribute to 

foci formation, we investigated the contribution of other domains to the localization of 

L3MBTL3. In addition to the MBT domains, L3MBTL3 harbors a Zn finger, a putative 

RNA-binding domain, and a C-terminal sterile alpha motif (SAM) domain (Fig. 1c). SAM 

domains are protein-protein interaction domains that can homo- or hetero-dimerize and often 

play a role in the formation of cellular protein complexes.37 Recently a polymer forming 

ability of the SAM domain of L3MBTL3 was proposed.38 We therefore hypothesized that, 

in addition to the binding of the MBT domains to Kme, the SAM domain of L3MBTL3 may 

contribute to the interaction of the full length protein with chromatin, resulting in resistance 

to UNC1215 inhibition of foci formation. Deletion of the SAM domain in N-terminally 

tagged FLMBT (GFP-FLMBTΔSAM) resulted in foci elimination (Supplementary Fig. 14), 

suggesting that the SAM domain also contributes to foci formation in the context of the full 

length protein. This may explain why the full length protein foci are relatively insensitive to 

UNC1215 inhibition of the Kme-binding activity of the MBT domains, and suggests that 

other protein and/or chromatin components of the GFP-FLMBT foci may also mediate 

localization. Having demonstrated the cellular potency of UNC1215 for GFP-3MBT by 

FRAP and foci inhibition, we were interested in confirming the binding of UNC1215 to the 

full length protein given its relative resistance to relocalization and an uncertain role of the 

SAM domain and other domains within L3MBTL3.

UNC1215 binds and co-localizes with full length L3MBTL3

With its propensity to form foci, we used the N-terminally tagged GFP full length 

L3MBTL3 fusion protein as a model system to further map the interaction between 

L3MBTL3 and UNC1215 in living cells. In order to address whether the MBT domains of 

GFP-FLMBT were available for interaction with UNC1215, the cell membrane permeable 

and long wavelength emitting merocyanine dye, mero76, was appended via a hexadiamine 

linker to the aniline ring of UNC1215. Upon treatment of HEK293 cells with the mero76–

UNC1215 conjugate, the fluorescent inhibitor co-localized with GFP-FLMBT (Fig. 5a), 

confirming that the probe effectively binds the full length protein in cells. When the cells 

were treated with dye alone (not covalently linked to UNC1215), no co-localization was 

observed indicating that the dye has no independent effect on the observed results 

(Supplementary Fig. 15). In addition, the fluorescent compound shows no foci formation in 

the presence of the domain 2 D381A mutant (Supplementary Fig. 15). By FRAP, the 

mobility of GFP-FLMBT was also found to increase upon treatment with UNC1215, albeit 

to a lesser extent than GFP-3MBT, and both GFP-FLMBT D274A and D381A mutants from 

domains 1 and 2, respectively show faster molecular movement (Supplementary Fig. 16), 

once again consistent with the notion that both domain 1 and domain 2 are utilized for 

recognition in vivo. Overall, these results support a cellular binding mechanism of UNC1215 

that mirrors our biophysical data, namely that UNC1215 binds to L3MBTL3 via both the 

domain 1 and domain 2 aromatic cage pockets thereby displacing native cellular Kme 

containing targets.

As final confirmation of cellular binding of UNC1215 to full length L3MBTL3, we 

investigated whether biotinylated-UNC1215 could affinity-purify L3MBTL3 from treated 

cells. Indeed, overexpressed full length flag-L3MBTL3 from HEK293 cell lysates could be 
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efficiently affinity-purified with this reagent and competed with non-biotinylated UNC1215 

(Fig. 5b). Taken together, these experiments provide convincing evidence that UNC1215 is 

a high affinity Kme competitive ligand for the MBT domains of L3MBTL3 in the context of 

the full length protein in cells.

BCLAF1 is a novel target of L3MBTL3

In order to better characterize the functional role of UNC1215, we sought to identify cellular 

interacting partners of L3MBTL3 whose interaction may be mediated by lysine methylation. 

We first analyzed several commercial antibodies to histone marks and common chromatin 

factors (Supplementary Table 7) to look for colocalization with GFP-FLMBT or 

GFP-3MBT foci. However, we did not observe any clear colocalization with several mono 

or dimethyl histone marks or with other proteins forming distinct nuclear structures in 

immunofluorescence experiments, possibly because of epitope unavailability in some cases.

We next investigated potential L3MBTL3 interacting proteins using affinity purification and 

mass spectrometry. After generating HEK293 cells transiently transfected with GFP-3MBT 

or GFP-FLMBT, the GFP-fused L3MBTL3 proteins were purified from cells cultured in the 

presence or absence of UNC1215, and the co-purifying proteins were identified by mass 

spectrometry. Among a number of proteins identified from this screen as potential 

L3MBTL3 interacting partners, one whose interaction with L3MBTL3 was inhibited by 

UNC1215 was BCL2-associated transcription factor 1 (BCLAF1), a transcriptional 

repressor that interacts with members of the BCL2 family of proteins and has been shown to 

localize inside the nucleus in focal structures during DNA damage repair.39,40 Using a 

commercially available BCLAF1 antibody, we determined that BCLAF1 nuclear foci 

closely co-localize with GFP-3MBT foci (Fig. 6a) and to a lesser extent with GFP-FLMBT 

foci (Supplementary Fig. 18). To validate this interaction further, immunoprecipitation 

experiments were performed with flag-L3MBTL3 proteins, confirming a cellular interaction 

between BCLAF1 and the MBT domains of L3MBTL3 and a somewhat reduced interaction 

with the full length protein (Fig. 6b). Upon treatment with 1 μM UNC1215, the interaction 

between flag-3MBT and BCLAF1 was substantially reduced, while the interaction between 

flag-FLMBT and BCLAF1 was reduced to a lesser extent. Similarly, the full length domain 

2 D381A mutant demonstrated reduced binding to BCLAF1 (Supplementary Fig. 19). This 

strongly suggests that BCLAF1 is a methyl-lysine mediated interaction partner of 

L3MBTL3.

Indeed, a search of the PhosphoSitePlus database (www.phosphosite.org/) reveals that 

publicly available mass spectrometric studies have previously identified K445me as a 

methylation mark on BCLAF1. To confirm this interaction, we tested the binding of a 

K445me containing BCLAF1 peptide (residues 438-452) to L3MBTL3 by AlphaScreen, 

demonstrating that the BCLAF1 Kme peptide effectively displaces H4K20me2 and binds 

L3MBTL3 with a similar affinity to H4K20me histone peptides (Supplementary Fig. 1). 

Based on these results, we propose that BCLAF1 is a novel methylation-dependent 

interaction partner of L3MBTL3 whose recognition can be antagonized by UNC1215.
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Discussion

The primary qualification criterion for a chemical probe is provision of sufficient data that 

associates its in vitro activity to its in vivo (minimally cellular) activity.16 UNC1215 

demonstrates submicromolar in vitro and cellular potency against L3MBTL3 Kme binding, 

is non-toxic to cells at above 100-fold its EC50, and is selective over a broad panel of other 

Kme binding domains, other chromatin regulators, and targets that might be modulated by 

its pharmacophoric properties such as ion channels and GPCRs. Our mechanistic studies of 

L3MBTL3 antagonism by UNC1215 revealed an unusual and intriguing polyvalent 

mechanism in which both domain 1 and domain 2 are involved in recognition of the probe. 

This binding mechanism of UNC1215, combined with the effects of point mutants in 

domain 1 and domain, hints at a potential polyvalent mechanism for substrate recognition by 

L3MBTL3. Our data supports a model in which the Kme binding function of L3MBTL3 

contributes to, but is not the sole determinant of, its nuclear localization. It is highly likely 

that additional domains such as the SAM domain contribute along with the MBT domains to 

orchestrate the cellular localization and function of L3MBTL3. Finally, we showed that 

UNC1215 antagonized the recognition of BCLAF1 by L3MBTL3, a novel target of this 

Kme reader. Thus, UNC1215 is a potent, selective, cell-active molecule that can be used 

with confidence to explore the cellular role of the Kme binding function of L3MBTL3. 

Moreover, UNC1215 is the first chemical probe for a Kme reader domain, demonstrating the 

chemical tractability of this target class and opening new opportunities for chemical biology 

and, potentially, drug discovery.

Online Methods

Protein pull-down experiments using compounds

GST fusion proteins were isolated from bacterial lysates using glutathione sepharose beads 

(GE Healthcare). In vitro compound pull-down assays were performed by pre-binding 5 μg 

of biotinylated UNC1215 to 2 μg of GST fusion protein in 500 μl of 1x binding buffer (50 

mM Tris HCl pH 7.5, 150 mM NaCl, 0.1% NP-40, 5 mM EDTA, 5 mM EGTA, 15 mM 

MgCl2) giving a final compound concentration of 0.01 μg/μl (6.4 μM). Incubation was done 

overnight rocking at 4 °C. Next, 25 μL of streptavidin agarose beads (Millipore) were pre-

washed with binding buffer and incubated with the compound-protein mix for 1 h rocking at 

4 °C. After three washes with 500 μl binding buffer, 30 μl of 2x protein loading buffer was 

added to the beads and boiled. The samples were resolved on a SDS-PAGE and western 

blots were performed using anti-GST antibody.

Protein pull-down experiments using the H4K20me2 peptide

In vitro peptide pull-down assays were performed as described above by pre-binding 1 μg of 

biotinylated H4K20me2 peptide (MW 2.416 kDa) with 1 μg of GST fusion protein in 500 

μL of 1x binding buffer.

Crystallization

L3MBTL3 protein was crystallized at a concentration of 10 mg/mL using the sitting drop 

vapor diffusion method at 18 °C. The reservoir solution contained 25% PEG 3350, 0.2 M 
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NH4Ac, 0.1 M Bis-Tris buffer at pH 5.5. Using a nylon loop, crystals were passed through 

reservoir solution additionally containing 20% glycerol, flash-frozen and stored in liquid 

nitrogen until data collection.41

Data collection/structure determination and refinement

A continuous sweep of 180 single-degree oscillation images was collected at beam line 19ID 

of the Advanced Photon Source at a wavelength of 0.9793 Å. Data were reduced using 

XDS, 42 POINTLESS,43 and SCALA.44 The structure was solved with the program 

PHASER45 and a model related to Protein Data Bank (PDB)46 entry 3UT1 (to be 

published). Geometry restraints for the inhibitor were prepared with PRODRG.47 The 

atomic model was re-built, refined and validated using COOT,48 REFMAC49/autoBUSTER 

(Buster version 2.10.0. (Global Phasing Ltd, Cambridge, UK, 2011)) and the 

MOLPROBITY server,50 respectively. For data and model statistics, refer to Supplementary 

Table 4.

Immunofluorescence

Images were acquired using a Quorum Spinning Disk Confocal microscope equipped with 

405, 491, 561, and 642 nm lasers. Image analysis and foci quantification were performed 

using Volocity 5.4.1. Foci were quantified using the % GFP intensity function.

For the localization experiments with GFP-3MBT, GFP-FLMBT, 3MBT-GFP, FLMBT-

GFP, mCherry-3MBT, mCherry-FLMBT, GFP-FLMBTÄSAM, and the site-directed 

mutants, 100,000 HEK293 cells/1mL/well were seeded on coverslips in 12 well plates. 16–

24 hours later, cells were transfected with the appropriate tagged construct using GeneJuice 

reagent, according to the manufacturer’s instructions, for an additional 48 hours. Prior to 

imaging, cells were treated with Hoechst 33342 dye for 30 min, washed with PBS, and 

incubated with the appropriate media.

For foci elimination experiments, the same transfection procedure was followed. In these 

experiments, cells were treated with the indicated concentrations of inhibitors for at least 24 

hours before imaging.

For merocyanine-UNC1215 and GFP-FLMBT co-localization experiments, cells were 

seeded as described above and transfected with wildtype GFP-FLMBT, D274A GFP-

FLMBT, or D381A GFP-FLMBT for 16–24 hours, followed by a 2 hour incubation with 2.5 

μM of the merocyanine dye (mero76) or the merocyanine-UNC1215 conjugate/1 mL/well at 

37 °C. After incubation with Hoechst 33342 dye and PBS washes, the media was changed to 

DMEM/F-12 without phenol red (11039) prior to imaging.

U2OS cells were similarly transfected with GFP fusion constructs. Cells were fixed with 2% 

formaldehyde in PBS for 10 minutes, permeabilized with 0.1% Triton X-100 PBS for 15 

minutes, blocked with 5% goat serum, 3% BSA, 0.1% Tween in PBS for 1 hr and incubated 

with a BCLAF antibody (Abcam) overnight at 4 °C in the blocking buffer. A secondary 

Alexa488 antibody (Cell Signaling Technology) was used and coverslips were mounted with 

Fluoroshield DAPI (Sigma).
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FRAP assay

Transfected cells were treated with inhibitors for 3–6 hours and analyzed on a Zeiss laser 

scanning confocal microscope LSM510 META Confocal using 488 nm laser bleaching and 

subsequent image acquisition every 2 seconds. The data was processed in Volocity 5.4.1 

software, normalized to the signal in an unbleached area, and expressed as a percent of the 

initial signal. The exponential curve fitting and half-life calculations were done using 

GraphPad Prism4 software. The dissociation constants were determined as reported by 

Yguerabide et al.51

Affinity purification with biotin-UNC1215 conjugate

HEK293 cells were transiently transfected with Flag-FLMBT using GeneJuice reagent 

according to manufacturer’s instructions. Approximately 10 million cells were used per 

immunoprecipitation. Frozen cell pellets were lysed in lysis buffer containing 50 mM Tris-

HCl, pH 8.0, 500 mM NaCl, 2 mM EDTA, 1% Triton X-100, and complete protease 

inhibitor cocktail (Roche). After vortexing and centrifugation at 13,200 × g, 4 °C, 5 min to 

pellet the DNA, the supernatant was diluted to 150 mM NaCl (while keeping other reagents’ 

concentrations constant) and was precleared with Streptavidin Mag Sepharose™ magnetic 

beads (GE Healthcare) for 1 hour at 4 °C. Streptavidin beads were incubated with 5 nmol 

biotin-UNC1215 (or incubated in the absence of biotin-UNC1215 as a negative control) in 

300 μL IP buffer (50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 2 mM EDTA, 1% Triton X-100, 

and protease inhibitor cocktail (Roche) for 30 min at room temperature. Precleared lysate 

was added to the biotin-UNC1215 prebound streptavidin beads, in the absence or presence 

of 5 nmol or 50 nmol cold, untagged UNC1215 overnight at 4 °C. Three washes were 

performed with IP buffer, followed by elution with buffer containing 100 mM Tris-HCl, pH 

8.0, 150 mM NaCl, 2 mM EDTA, 1% Triton, 3% SDS, 5 mM DTT, and 15 mM ME, 

analysis by SDS-PAGE, and immunoblotting.

Co-immunoprecipitation experiments

HEK293 cells were transfected with Flag or GFP tagged L3MBTL3, treated with inhibitor 

(1 μM) for 18 hours, and lysed in 50 mM TrisHCl, 450 mM NaCl, 1 mM EDTA, 1% Triton 

X-100, and protease inhibitors. The lysates were diluted to adjust the NaCl concentration to 

200 mM, and then an anti-Flag antibody (Sigma) and protein A Dynabeads (Life 

Technologies) were added for incubation at 4 °C overnight. The beads were washed 3 times 

with the lysis buffer, eluted using 100 mM Na2H2PO4, 150 mM NaCl, 2 mM EDTA, 5 mM 

dithiothreitol, 1% Triton X-100, 3% SDS, 1 mM sodium orthovanadate, and 150 mM β-

mercaptoethanol. SDS-PAGE separated proteins were transferred to PVDF membrane 

(Millipore) and immunoblotted using BCLAF1 (BTF1) antibody (Abcam).

Protein interactor screen and mass spectroscopy analysis

5 × 15 cm plates were used for one biological replica, with two biological replicas 

performed for each set of conditions. HEK293 cells transiently transfected with GFP-3MBT 

or GFP-FLMBT were lysed in high salt AFC buffer (10 mM Tris-HCL, pH 7.9, 420 mM 

NaCl, 0.1% NP-40) by freeze-thawing on a dry ice/ethanol mixture and in a 37 °C water 

bath. Freeze-thawing was repeated three times, after which cells were sonicated on ice (8 
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times, 0.3 s on, 0.7 s off), incubated with benzonase nuclease (to give a final concentration 

of 12.5–25 units/mL) for 30 min at 4°C, and centrifuged for 1 hr at 40,000 rpm. The cell 

lysates were then incubated with an anti-GFP antibody (Abcam) at 4°C overnight, protein G 

(Sigma) at 4 °C for 4 hours, and washed with low salt AFC buffer (10 mM Tris-HCl, pH 

7.9, 100 mM NaCl, 0.1% NP-40), 5 × 1 mL each time. Bound proteins were eluted with 500 

mM ammonium hydroxide, dried, resuspended in 50 mM ammonium bicarbonate, trypsin 

digested, and subjected to MS analysis. X tandem search algorithm was used to identify the 

peptides. The total spectral counts were normalized to the molecular weight of proteins and 

the complex was visualized using cytoscape.52 For cytoscape analysis, only those interactors 

were included that were not present in the vector alone purification, and had spectral counts 

equal to or higher than six.

Additional methods

Synthesis of UNC1021, UNC1079, UNC1215, and other related analogs are described in 

Supplementary Note 1. Additional methods are presented in Supplementary Information, 

including biochemical assays, selectivity assays, protein expression and purification, protein 

mutagenesis, and compound toxicity studies. Additional results are also included in 

Supplementary Information.

Accession codes

Protein Data Bank: coordinates and structure factors for the co-crystal structure of the 

L3MBTL3-UNC1215 complex have been deposited with accession code 4FL6.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. UNC1215 is a potent antagonist of L3MBTL3
(a) Structure of UNC1021, a nanomolar antagonist of L3MBTL3 methyl-lysine binding 

activity. UNC1215 is a more potent L3MBTL3 cellular antagonist, and UNC1079 is a 

structurally similar but significantly less potent antagonist and negative control. (b) ITC 

analysis of site-directed mutants of L3MBTL3 (3MBT) revealed strong binding of 

UNC1215 to wild-type protein, but not to domain 2 binding pocket mutant D381A. Domain 

1 (D274A) mutant bound to UNC1215 with weaker affinity. (c) Domain architecture of the 

full length L3MBTL3 protein showing a putative FCS nucleic acid binding domain, a Zinc 

finger (ZnF), and a SAM (sterile alpha motif) domain, in addition to three MBT repeat 

sequences (pink, blue, and yellow). Mono- or dimethyl-lysine is represented schematically 

by a green oval. Mutations made in the aromatic cage of the second MBT domain (D381A) 

and in the aromatic cage of the first MBT domain (D274A), are represented by stars. See 

Supplementary Figure 21 for a schematic of all protein constructs and tagged fusion proteins 

used for in vitro and cellular studies. (d) A surface representation of the of the 3MBT crystal 

structure (PDB 3UT1), colored as in c, but with the residues composing the conserved 

(domain 2) or semiconserved (domains 1 & 3) aromatic cage of each repeat in red, dark 

blue, and orange for domain 1, 2 & 3, respectively. Thus, the three presumed binding sites of 

3MBT exist in a triangular arrangement, all on the same surface of the molecule.
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Figure 2. X-ray crystal structure of the UNC1215-3MBT complex
UNC1215 binds in a unique 2:2 binding mode supporting the mechanism of action of 

UNC1215 (PDB 4FL6). (a) Two 3MBT molecules are rotated around a pseudo two-fold 

axis perpendicular to the plane of the paper. As a consequence, the domain 3 aromatic cages 

of each protein, domain 3′ and domain 3″, face one another, while domain 1′ faces domain 

2″ and domain 2′ faces domain 1″. (b) UNC1215 binding is primarily mediated by 

interaction with the aromatic cage of domain 2, consisting of F362, F380, W383, and Y387, 

and via a key hydrogen bond between one pyrrolidine nitrogen and D381. The piperidine-

pyrrolidine ortho to the aniline ring bridges the two proteins by interacting with domain 1″, 

forming a salt bridge with D274. A second UNC1215 molecule binds in a reciprocal fashion 

to domain 1′ and domain 2″ binding pockets. (c) Surface representation showing the close 

association of the two 3MBT subunits and the means by which UNC1215 bridges the 

aromatic cages of domain 1 (pink) and domain 2 (cyan).
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Figure 3. UNC1215 binds a small set of Kme reader proteins with lower affinity than L3MBTL3
(a) Structure of a biotinylated analog of UNC1215. (b) H4K20me2 pull-down experiments 

in the presence of increasing concentrations of UNC1215 reveal nanomolar potency for 

antagonism of 3MBT pull-down, whereas much weaker affinity was observed for 53BP1.
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Figure 4. UNC1215 potently antagonizes 3MBT localization in cells
(a) Recovery time of a photobleached area in GFP-3MBT expressing cells is reduced upon 

treatment with UNC1215 in a dose response manner, whereas inactive compound UNC1079 

shows no effect. Solid lines represent the exponential fit of the data for 8–10 nuclei with the 

coefficients of variation ranging from 1–30% for the individual time points. The 

experiments were performed 3 independent times with similar data resulting. Inset shows 

time lapse images of photobleached nuclei for UNC1215 (1 μM) and control (water) 

treatments. (b) GFP fusions of 3MBT and FLMBT localize to the nucleus in HEK293 cells. 

UNC1215 inhibits the foci formation of GFP-3MBT in a dose response fashion, whereas 

UNC1079 has no effect on the foci. In contrast, UNC1215 is relatively ineffective at 

inhibiting foci formation of N-terminally tagged GFP-FLMBT (scale bar, 10 μm). (c) The 

GFP-3MBT D274A domain 1 mutant shows a reduction in foci formation, while the 

GFP-3MBT D381A domain 2 mutant does not form nuclear foci. Error bars in c and d 
represent SEM from 15–25 cells.
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Figure 5. UNC1215 binds and co-localizes with full length L3MBTL3
(a) UNC1215 conjugated to the cell-permeable merocyanine dye, mero-76, co-localizes with 

GFP-FLMBT in HEK293 cells (scale bar, 10 μm; green is GFP-FLMBT, red is 

merocyanine-UNC1215, and blue is Hoechst dye). (b) FLMBT binds to biotin-UNC1215 (5 

nmol). The presence of increasing concentrations (1 or 10 equivalents relative to biotin-

UNC1215) of untagged UNC1215 results in a decreased amount of bound FLMBT.
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Figure 6. Identification of BCLAF1 as a novel L3MBTL3 protein interactor
(a) In U2OS cells, 3MBT colocalizes with BCLAF1 (top panel; green is GFP-3MBT, red is 

BCLAF, and blue is DAP1). Upon treatment with UNC1215, the 3MBT and BCLAF1 

nuclear foci are noticeably disrupted (bottom panel). (b) Immunoprecipitation experiments 

in cells transfected with flag-3MBT or flag-FLMBT show that UNC1215 disrupts the 

interaction between 3MBT and BCLAF1 and also reduces the interaction between FLMBT 

and BCLAF1. U denotes untransfected cells.
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