36 research outputs found

    Protein Expression Knockdown in Cancer Cells Induced by a Gemini Cationic Lipid Nanovector with Histidine-Based Polar Heads

    Get PDF
    A histidine-based gemini cationic lipid, which had already demonstrated its efficiency as a plasmid DNA (pDNA) nanocarrier, has been used in this work to transfect a small interfering RNA (siRNA) into cancer cells. In combination with the helper lipid monoolein glycerol (MOG), the cationic lipid was used as an antiGFP-siRNA nanovector in a multidisciplinary study. Initially, a biophysical characterization by zeta potential (ζ) and agarose gel electrophoresis experiments was performed to determine the lipid effective charge and confirm siRNA compaction. The lipoplexes formed were arranged in Lα lamellar lyotropic liquid crystal phases with a cluster-type morphology, as cryo-transmission electron microscopy (cryo-TEM) and small-angle X-ray scattering (SAXS) studies revealed. Additionally, in vitro experiments confirmed the high gene knockdown efficiency of the lipid-based nanovehicle as detected by flow cytometry (FC) and epifluorescence microscopy, even better than that of Lipofectamine2000*, the transfecting reagent commonly used as a positive control. Cytotoxicity assays indicated that the nanovector is non-toxic to cells. Finally, using nano-liquid chromatography tandem mass spectrometry (nanoLC-MS/MS), apolipoprotein A-I and A-II followed by serum albumin were identified as the proteins with higher affinity for the surface of the lipoplexes. This fact could be beyond the remarkable silencing activity of the histidine-based lipid nanocarrier herein presentedThis work has been funded by the Spanish Ministry of Science, Innovation and Universities (MICIU) (Grant RTI2018-095844-B-I00 and CTQ2017-88948-P), the University Complutense of Madrid (Spain) (project number UCMA05-33-010), and the Regional Government of Madrid (Grant P2018/NMT-4389). P.T. thanks Agencia Estatal de Investigación (AEI) through the Project MAT2016-80266-R and Xunta de Galicia (Grupo de Referencia Competitiva ED431C 2018/26; Agrupación Estratégica en Materiales-AEMAT ED431E 2018/08). ERDF funds are all greatly acknowledged. The proteomic analysis was performed in the Proteomics Unit of Complutense University of Madrid, a member of ProteoRed and is supported by grant PT17/0019, of the PE I+D+i 2013-2016, funded by ISCIII and ERDFS

    Molecular Oxygen Lignin Depolymerization: An Insight into the Stability of Phenolic Monomers

    Full text link
    This is the peer reviewed version of the following article: Y. Mathieu, J. D. Vidal, L. Arribas Martínez, N. Abad Fernández, S. Iborra, A. Corma, ChemSusChem 2020, 13, 4743, which has been published in final form at https://doi.org/10.1002/cssc.202001295. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] During oxidative depolymn. of lignin in aq. alk. medium using mol. oxygen as oxidant, the highly functionalized primary phenolic monomers are not stable products, owing to various not fully identified secondary reaction mechanisms. However, better understanding of the mechanisms responsible for the instability of the main part of the products of interest derived from lignin is of much interest. Evaluation of their individual reactivities under oxidative conditions should significantly help to find a better way to valorize the lignin polymer and to maximize the yields of target value-added products. Consequently, the main objective of this study is to assess the individual stabilities of some selected ligninbased phenolic compds., such as vanillin, vanillic acid, and acetovanillone, together with some other pure chem. compds. such as phenol and anisole to give an insight into the mechanisms responsible for the simultaneous formation and repolymn. of those products and the influence of the oxidn. conditions. Various complementary strategies of stabilization are proposed, discussed, and applied for the oxidative depolymn. reactions of a tech. lignin extd. from pinewood with a high content of b-O-4 interconnecting bonds to try to obtain enhanced yields of value-added products.The authors thank Tecnicas Reunidas for material and financial support. We also acknowledge the Spanish Ministry of Science, Innovation, and Universities for funding through the "Severo Ochoa" Excellence Program (SEV 2016-0683) and the LIGNO-PRIZED project from the Spanish Centre for the Development of Industrial Technology (CDTI) in the framework of the Strategic Program of National Business Research Consortia (CIEN-2016). Special and kindly thanks are also given to Dr. Dalgi Sunith Barbosa Trillos and Dr. Jakob Mottweiler for their priceless help during the elaboration of the present work.Mathieu, Y.; Vidal, JD.; Arribas Martínez, L.; Abad Fernández, N.; Iborra Chornet, S.; Corma Canós, A. (2020). Molecular Oxygen Lignin Depolymerization: An Insight into the Stability of Phenolic Monomers. ChemSusChem. 13(17):4743-4758. https://doi.org/10.1002/cssc.202001295S474347581317BP. energy outlook2019 https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2019.pdf.J. Bluestein J. Rackley ICF International technical report2010 Coverage of Petroleum Sector Greenhouse Gas Emissions under Climate Policy.Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of Transportation Fuels from Biomass:  Chemistry, Catalysts, and Engineering. Chemical Reviews, 106(9), 4044-4098. doi:10.1021/cr068360dFache, M., Boutevin, B., & Caillol, S. (2015). Vanillin Production from Lignin and Its Use as a Renewable Chemical. ACS Sustainable Chemistry & Engineering, 4(1), 35-46. doi:10.1021/acssuschemeng.5b01344Volf, I., & Popa, V. I. (2018). Integrated Processing of Biomass Resources for Fine Chemical Obtaining. Biomass as Renewable Raw Material to Obtain Bioproducts of High-Tech Value, 113-160. doi:10.1016/b978-0-444-63774-1.00004-1Chio, C., Sain, M., & Qin, W. (2019). Lignin utilization: A review of lignin depolymerization from various aspects. Renewable and Sustainable Energy Reviews, 107, 232-249. doi:10.1016/j.rser.2019.03.008Wang, H., Pu, Y., Ragauskas, A., & Yang, B. (2019). From lignin to valuable products–strategies, challenges, and prospects. Bioresource Technology, 271, 449-461. doi:10.1016/j.biortech.2018.09.072Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989dVohra, M., Manwar, J., Manmode, R., Padgilwar, S., & Patil, S. (2014). Bioethanol production: Feedstock and current technologies. Journal of Environmental Chemical Engineering, 2(1), 573-584. doi:10.1016/j.jece.2013.10.013Claassen, P. A. M., van Lier, J. B., Lopez Contreras, A. M., van Niel, E. W. J., Sijtsma, L., Stams, A. J. M., … Weusthuis, R. A. (1999). Utilisation of biomass for the supply of energy carriers. Applied Microbiology and Biotechnology, 52(6), 741-755. doi:10.1007/s002530051586Kamm, B., & Kamm, M. (2004). Principles of biorefineries. Applied Microbiology and Biotechnology, 64(2), 137-145. doi:10.1007/s00253-003-1537-7Banerjee, S., Mudliar, S., Sen, R., Giri, B., Satpute, D., Chakrabarti, T., & Pandey, R. A. (2010). Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuels, Bioproducts and Biorefining, 4(1), 77-93. doi:10.1002/bbb.188Howard, R. L., Abotsi, E., Jansen, van R. E. L., & Howard, S. (2003). Lignocellulose biotechnology: issues of bioconversion and enzyme production. African Journal of Biotechnology, 2(12), 602-619. doi:10.5897/ajb2003.000-1115Kleinert, M., & Barth, T. (2008). Towards a Lignincellulosic Biorefinery: Direct One-Step Conversion of Lignin to Hydrogen-Enriched Biofuel. Energy & Fuels, 22(2), 1371-1379. doi:10.1021/ef700631wBajpai, P. (2018). Wood-Based Products and Chemicals. Biermann’s Handbook of Pulp and Paper, 233-247. doi:10.1016/b978-0-12-814240-0.00008-2Zakzeski, J., Bruijnincx, P. C. A., Jongerius, A. L., & Weckhuysen, B. M. (2010). The Catalytic Valorization of Lignin for the Production of Renewable Chemicals. Chemical Reviews, 110(6), 3552-3599. doi:10.1021/cr900354uAmen-Chen, C., Pakdel, H., & Roy, C. (2001). Production of monomeric phenols by thermochemical conversion of biomass: a review. Bioresource Technology, 79(3), 277-299. doi:10.1016/s0960-8524(00)00180-2Reale, S., Di Tullio, A., Spreti, N., & De Angelis, F. (2004). Mass spectrometry in the biosynthetic and structural investigation of lignins. Mass Spectrometry Reviews, 23(2), 87-126. doi:10.1002/mas.10072Dorrestijn, E., Laarhoven, L. J. J., Arends, I. W. C. E., & Mulder, P. (2000). The occurrence and reactivity of phenoxyl linkages in lignin and low rank coal. Journal of Analytical and Applied Pyrolysis, 54(1-2), 153-192. doi:10.1016/s0165-2370(99)00082-0Evans, R. J., Milne, T. A., & Soltys, M. N. (1986). Direct mass-spectrometric studies of the pyrolysis of carbonaceous fuels. Journal of Analytical and Applied Pyrolysis, 9(3), 207-236. doi:10.1016/0165-2370(86)80012-2Chen, Z., & Wan, C. (2017). Biological valorization strategies for converting lignin into fuels and chemicals. Renewable and Sustainable Energy Reviews, 73, 610-621. doi:10.1016/j.rser.2017.01.166Pu, Y., Zhang, D., Singh, P. M., & Ragauskas, A. J. (2008). The new forestry biofuels sector. Biofuels, Bioproducts and Biorefining, 2(1), 58-73. doi:10.1002/bbb.48Yuan, Z., Cheng, S., Leitch, M., & Xu, C. (Charles). (2010). Hydrolytic degradation of alkaline lignin in hot-compressed water and ethanol. Bioresource Technology, 101(23), 9308-9313. doi:10.1016/j.biortech.2010.06.140Reiter, J., Strittmatter, H., Wiemann, L. O., Schieder, D., & Sieber, V. (2013). Enzymatic cleavage of lignin β-O-4 aryl ether bonds via net internal hydrogen transfer. Green Chemistry, 15(5), 1373. doi:10.1039/c3gc40295aBehling, R., Valange, S., & Chatel, G. (2016). Heterogeneous catalytic oxidation for lignin valorization into valuable chemicals: what results? What limitations? What trends? Green Chemistry, 18(7), 1839-1854. doi:10.1039/c5gc03061gCollinson, S. R., & Thielemans, W. (2010). The catalytic oxidation of biomass to new materials focusing on starch, cellulose and lignin. Coordination Chemistry Reviews, 254(15-16), 1854-1870. doi:10.1016/j.ccr.2010.04.007Pandey, M. P., & Kim, C. S. (2010). Lignin Depolymerization and Conversion: A Review of Thermochemical Methods. Chemical Engineering & Technology, 34(1), 29-41. doi:10.1002/ceat.201000270Mathias, A. L., & Rodrigues, A. E. (1995). Production of Vanillin by Oxidation of Pine Kraft Lignins with Oxygen. Holzforschung, 49(3), 273-278. doi:10.1515/hfsg.1995.49.3.273Villar, J. C., Caperos, A., & García-Ochoa, F. (2001). Oxidation of hardwood kraft-lignin to phenolic derivatives with oxygen as oxidant. Wood Science and Technology, 35(3), 245-255. doi:10.1007/s002260100089Calvo-Flores, F. G., & Dobado, J. A. (2010). Lignin as Renewable Raw Material. ChemSusChem, 3(11), 1227-1235. doi:10.1002/cssc.201000157’T Hart, B. A., Simons, J. M., Shoshan, K.-S., Bakker, N. P. M., & Labadie, R. P. (1990). Antiarthritic activity of the newly developed neutrophil oxidative burst antagonist apocynin. Free Radical Biology and Medicine, 9(2), 127-131. doi:10.1016/0891-5849(90)90115-yStefanska, J., Sarniak, A., Wlodarczyk, A., Sokolowska, M., Pniewska, E., Doniec, Z., … Pawliczak, R. (2012). Apocynin reduces reactive oxygen species concentrations in exhaled breath condensate in asthmatics. Experimental Lung Research, 38(2), 90-99. doi:10.3109/01902148.2011.649823Yancheva, D., Velcheva, E., Glavcheva, Z., Stamboliyska, B., & Smelcerovic, A. (2016). Insights in the radical scavenging mechanism of syringaldehyde and generation of its anion. Journal of Molecular Structure, 1108, 552-559. doi:10.1016/j.molstruc.2015.12.054Srinivasulu, C., Ramgopal, M., Ramanjaneyulu, G., Anuradha, C. M., & Suresh Kumar, C. (2018). Syringic acid (SA) ‒ A Review of Its Occurrence, Biosynthesis, Pharmacological and Industrial Importance. Biomedicine & Pharmacotherapy, 108, 547-557. doi:10.1016/j.biopha.2018.09.069Baker, C. J., Mock, N. M., Whitaker, B. D., Roberts, D. P., Rice, C. P., Deahl, K. L., & Aver’yanov, A. A. (2005). Involvement of acetosyringone in plant–pathogen recognition. Biochemical and Biophysical Research Communications, 328(1), 130-136. doi:10.1016/j.bbrc.2004.12.153Liu, C., Wu, S., Zhang, H., & Xiao, R. (2019). Catalytic oxidation of lignin to valuable biomass-based platform chemicals: A review. Fuel Processing Technology, 191, 181-201. doi:10.1016/j.fuproc.2019.04.007Levec, J., & Pintar, A. (2007). Catalytic wet-air oxidation processes: A review. Catalysis Today, 124(3-4), 172-184. doi:10.1016/j.cattod.2007.03.035Xiang, Q., & Lee, Y. Y. (2001). Production of Oxychemicals from Precipitated Hardwood Lignin. Applied Biochemistry and Biotechnology, 91-93(1-9), 71-80. doi:10.1385/abab:91-93:1-9:71Santos, S. G., Marques, A. P., Lima, D. L. D., Evtuguin, D. V., & Esteves, V. I. (2010). Kinetics of Eucalypt Lignosulfonate Oxidation to Aromatic Aldehydes by Oxygen in Alkaline Medium. Industrial & Engineering Chemistry Research, 50(1), 291-298. doi:10.1021/ie101402tWu, G., Heitz, M., & Chornet, E. (1994). Improved Alkaline Oxidation Process for the Production of Aldehydes (Vanillin and Syringaldehyde) from Steam-Explosion Hardwood Lignin. Industrial & Engineering Chemistry Research, 33(3), 718-723. doi:10.1021/ie00027a034Bhargava, S., Jani, H., Tardio, J., Akolekar, D., & Hoang, M. (2007). Catalytic Wet Oxidation of Ferulic Acid (A Model Lignin Compound) Using Heterogeneous Copper Catalysts. Industrial & Engineering Chemistry Research, 46(25), 8652-8656. doi:10.1021/ie070085dDeng, H., Lin, L., Sun, Y., Pang, C., Zhuang, J., Ouyang, P., … Liu, S. (2008). Activity and Stability of Perovskite-Type Oxide LaCoO3 Catalyst in Lignin Catalytic Wet Oxidation to Aromatic Aldehydes Process. Energy & Fuels, 23(1), 19-24. doi:10.1021/ef8005349Deng, H., Lin, L., Sun, Y., Pang, C., Zhuang, J., Ouyang, P., … Liu, S. (2008). Perovskite-type Oxide LaMnO3: An Efficient and Recyclable Heterogeneous Catalyst for the Wet Aerobic Oxidation of Lignin to Aromatic Aldehydes. Catalysis Letters, 126(1-2), 106-111. doi:10.1007/s10562-008-9588-0Ansaloni, S., Russo, N., & Pirone, R. (2017). Wet Air Oxidation of Industrial Lignin Case Study: Influence of the Dissolution Pretreatment and Perovskite-type Oxides. Waste and Biomass Valorization, 9(11), 2165-2179. doi:10.1007/s12649-017-9947-4Deng, H., Lin, L., & Liu, S. (2010). Catalysis of Cu-Doped Co-Based Perovskite-Type Oxide in Wet Oxidation of Lignin To Produce Aromatic Aldehydes. Energy & Fuels, 24(9), 4797-4802. doi:10.1021/ef100768eZhang, J., Deng, H., & Lin, L. (2009). Wet Aerobic Oxidation of Lignin into Aromatic Aldehydes Catalysed by a Perovskite-type Oxide: LaFe1-xCuxO3 (x=0, 0.1, 0.2). Molecules, 14(8), 2747-2757. doi:10.3390/molecules14082747Gao, P., Li, C., Wang, H., Wang, X., & Wang, A. (2013). Perovskite hollow nanospheres for the catalytic wet air oxidation of lignin. Chinese Journal of Catalysis, 34(10), 1811-1815. doi:10.1016/s1872-2067(12)60691-3Gale, M., Cai, C. M., & Gilliard‐Abdul‐Aziz, K. L. (2020). Heterogeneous Catalyst Design Principles for the Conversion of Lignin into High‐Value Commodity Fuels and Chemicals. ChemSusChem, 13(8), 1947-1966. doi:10.1002/cssc.202000002Pepper, J. M., Baylis, P. E. T., & Adler, E. (1959). THE ISOLATION AND PROPERTIES OF LIGNINS OBTAINED BY THE ACIDOLYSIS OF SPRUCE AND ASPEN WOODS IN DIOXANE–WATER MEDIUM. Canadian Journal of Chemistry, 37(8), 1241-1248. doi:10.1139/v59-183Yuan, T.-Q., Sun, S.-N., Xu, F., & Sun, R.-C. (2011). Characterization of Lignin Structures and Lignin–Carbohydrate Complex (LCC) Linkages by Quantitative 13C and 2D HSQC NMR Spectroscopy. Journal of Agricultural and Food Chemistry, 59(19), 10604-10614. doi:10.1021/jf2031549Bauer, S., Sorek, H., Mitchell, V. D., Ibáñez, A. B., & Wemmer, D. E. (2012). Characterization of Miscanthus giganteus Lignin Isolated by Ethanol Organosolv Process under Reflux Condition. Journal of Agricultural and Food Chemistry, 60(33), 8203-8212. doi:10.1021/jf302409dWen, J.-L., Sun, S.-L., Xue, B.-L., & Sun, R.-C. (2013). Recent Advances in Characterization of Lignin Polymer by Solution-State Nuclear Magnetic Resonance (NMR) Methodology. Materials, 6(1), 359-391. doi:10.3390/ma6010359Peterson, D. J., & Loening, N. M. (2007). QQ-HSQC: a quick, quantitative heteronuclear correlation experiment for NMR spectroscopy. Magnetic Resonance in Chemistry, 45(11), 937-941. doi:10.1002/mrc.2073Sette, M., Wechselberger, R., & Crestini, C. (2011). Elucidation of Lignin Structure by Quantitative 2D NMR. Chemistry - A European Journal, 17(34), 9529-9535. doi:10.1002/chem.201003045Tarabanko, V. E., Petukhov, D. V., & Selyutin, G. E. (2004). New Mechanism for the Catalytic Oxidation of Lignin to Vanillin. Kinetics and Catalysis, 45(4), 569-577. doi:10.1023/b:kica.0000038087.95130.a5Rinesch, T., Mottweiler, J., Puche, M., Concepción, P., Corma, A., & Bolm, C. (2017). Mechanistic Investigation of the Catalyzed Cleavage for the Lignin β-O-4 Linkage: Implications for Vanillin and Vanillic Acid Formation. ACS Sustainable Chemistry & Engineering, 5(11), 9818-9825. doi:10.1021/acssuschemeng.7b01725Sette, M., Lange, H., & Crestini, C. (2013). QUANTITATIVE HSQC ANALYSES OF LIGNIN: A PRACTICAL COMPARISON. Computational and Structural Biotechnology Journal, 6(7), e201303016. doi:10.5936/csbj.201303016Bujanovic, B., Ralph, S., Reiner, R., Hirth, K., & Atalla, R. (2010). Polyoxometalates in Oxidative Delignification of Chemical Pulps: Effect on Lignin. Materials, 3(3), 1888-1903. doi:10.3390/ma3031888Casimiro, F. M., Costa, C. A. E., Botelho, C. M., Barreiro, M. F., & Rodrigues, A. E. (2019). Kinetics of Oxidative Degradation of Lignin-Based Phenolic Compounds in Batch Reactor. Industrial & Engineering Chemistry Research, 58(36), 16442-16449. doi:10.1021/acs.iecr.9b02818Dabral, S., Hernández, J. G., Kamer, P. C. J., & Bolm, C. (2017). Organocatalytic Chemoselective Primary Alcohol Oxidation and Subsequent Cleavage of Lignin Model Compounds and Lignin. ChemSusChem, 10(13), 2707-2713. doi:10.1002/cssc.201700703Schutyser, W., Renders, T., Van den Bosch, S., Koelewijn, S.-F., Beckham, G. T., & Sels, B. F. (2018). Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chemical Society Reviews, 47(3), 852-908. doi:10.1039/c7cs00566kSubbotina, E., Velty, A., Samec, J. S. M., & Corma, A. (2020). Zeolite‐Assisted Lignin‐First Fractionation of Lignocellulose: Overcoming Lignin Recondensation through Shape‐Selective Catalysis. ChemSusChem, 13(17), 4528-4536. doi:10.1002/cssc.202000330Mattsson, C., Andersson, S.-I., Belkheiri, T., Åmand, L.-E., Olausson, L., Vamling, L., & Theliander, H. (2016). Using 2D NMR to characterize the structure of the low and high molecular weight fractions of bio-oil obtained from LignoBoost™ kraft lignin depolymerized in subcritical water. Biomass and Bioenergy, 95, 364-377. doi:10.1016/j.biombioe.2016.09.004Rinaldi, R., Jastrzebski, R., Clough, M. T., Ralph, J., Kennema, M., Bruijnincx, P. C. A., & Weckhuysen, B. M. (2016). Paving the Way for Lignin Valorisation: Recent Advances in Bioengineering, Biorefining and Catalysis. Angewandte Chemie International Edition, 55(29), 8164-8215. doi:10.1002/anie.201510351Rinaldi, R., Jastrzebski, R., Clough, M. T., Ralph, J., Kennema, M., Bruijnincx, P. C. A., & Weckhuysen, B. M. (2016). Wege zur Verwertung von Lignin: Fortschritte in der Biotechnik, der Bioraffination und der Katalyse. Angewandte Chemie, 128(29), 8296-8354. doi:10.1002/ange.201510351Tarabanko, V. E., Fomova, N. A., Kuznetsov, B. N., Ivanchenko, N. M., & Kudryashev, A. V. (1995). On the mechanism of vanillin formation in the catalytic oxidation of lignin with oxygen. Reaction Kinetics & Catalysis Letters, 55(1), 161-170. doi:10.1007/bf02075847Venica, A. D., Chen, C.-L., & Gratzl, J. S. (2008). Soda–AQ delignification of poplar wood. Part 1: Reaction mechanism and pulp properties. Holzforschung, 62(6). doi:10.1515/hf.2008.118Gaspa, S., Amura, I., Porcheddu, A., & De Luca, L. (2017). Anhydrides from aldehydes or alcohols via oxidative cross-coupling. New Journal of Chemistry, 41(3), 931-939. doi:10.1039/c6nj02625

    I.amAble: aprendizaje e inclusión educativa mediante talleres científicos

    Get PDF
    I.amAble ha ofrecido a estudiantes universitarios de física, química, veterinaria, biología y educación la oportunidad de complementar su formación mediante el diseño, la realización y la evaluación de talleres científicos que faciliten la inclusión de personas con diversidad cognitiva. Los talleres han sido diseñados por el alumnado universitario de ciencias y perfilados por estudiantes de educación para ser llevados a cabo por alumnado preuniversitario en parejas, de forma que un miembro pertenezca a un centro de secundaria ordinario y el otro miembro a un centro de educación especial. Aquellos talleres que se han considerado más adecuados por su adaptabilidad se han llevado a la práctica guiados por estudiantes de ciencias y de educación. Los miembros del proyecto, que incluyen representantes de todos los estamentos universitarios, han supervisado todas las tareas descritas anteriormente. Además de los miembros de la Universidad Complutense, también figuran personas voluntarias de otras instituciones científicas y educativas. El alumnado universitario ha tenido la posibilidad, no sólo de asentar y profundizar algunos contenidos científicos o poner en práctica algunas de las enseñanzas adquiridas, sino también de desarrollar su empatía, su capacidad de comunicar e improvisar y de adaptarse a un público heterogéneo. Ello ha mejorado sus perspectivas laborales, especialmente dentro de la educación formal e informal (animación sociocultural, museos científicos...). Además, han contribuido a facilitar la inclusión educativa de las personas con diversidad funcional y a mejorar la cultura científica de la sociedad. Con este proyecto, inspirado en la metodología Aprendizaje-Servicio (ApS), se ha pretendido también mejorar la accesibilidad a las experiencias y contenidos científicos y facilitar la inclusión educativa de las personas con diversidad funcional, especialmente diversidad cognitiva o intelectual. En la primera edición de I.amAble (2016-17) se hizo hincapié en el diseño y selección de fichas para hacer talleres (aunque también se realizaron talleres). En la segunda edición (2017-18) se puso un mayor énfasis en llevar los talleres a un mayor número de centros educativos. En la pasada edición (2018-19) se puso el acento en los procesos de evaluación. En esta cuarta edición (2019-20), se han seguido trabajando y puliendo todos esos aspectos, pero se ha priorizado la transformación de I.amAble en un proyecto de tipo aprendizaje-servicio, integrándolo en asignaturas formales, concretamente en Complementos de Física y Complementos de Química, del Máster en Formación de Profesorado, en la especialidad de Física y Química

    El abrigo y la cueva de Benzú en la Prehistoria de Ceuta. Aproximación al estudio de las sociedades cazadoras-recolectoras y tribales comunitarias en el ámbito norteafricano del Estrecho de Gibraltar.

    Get PDF
    Extensa obra sobre los métodos, antecedentes y objetivos; observaciones preliminares y estudios anteriores, excavación y análisis de los resultados del Proyecto Benzú.Consejería de Educación, Cultura y Deporte de la Ciudad Autónoma de Ceuta. Universidad Española de Educación a Distancia. Universidad de Cádiz.419 página

    Treatment with tocilizumab or corticosteroids for COVID-19 patients with hyperinflammatory state: a multicentre cohort study (SAM-COVID-19)

    Get PDF
    Objectives: The objective of this study was to estimate the association between tocilizumab or corticosteroids and the risk of intubation or death in patients with coronavirus disease 19 (COVID-19) with a hyperinflammatory state according to clinical and laboratory parameters. Methods: A cohort study was performed in 60 Spanish hospitals including 778 patients with COVID-19 and clinical and laboratory data indicative of a hyperinflammatory state. Treatment was mainly with tocilizumab, an intermediate-high dose of corticosteroids (IHDC), a pulse dose of corticosteroids (PDC), combination therapy, or no treatment. Primary outcome was intubation or death; follow-up was 21 days. Propensity score-adjusted estimations using Cox regression (logistic regression if needed) were calculated. Propensity scores were used as confounders, matching variables and for the inverse probability of treatment weights (IPTWs). Results: In all, 88, 117, 78 and 151 patients treated with tocilizumab, IHDC, PDC, and combination therapy, respectively, were compared with 344 untreated patients. The primary endpoint occurred in 10 (11.4%), 27 (23.1%), 12 (15.4%), 40 (25.6%) and 69 (21.1%), respectively. The IPTW-based hazard ratios (odds ratio for combination therapy) for the primary endpoint were 0.32 (95%CI 0.22-0.47; p < 0.001) for tocilizumab, 0.82 (0.71-1.30; p 0.82) for IHDC, 0.61 (0.43-0.86; p 0.006) for PDC, and 1.17 (0.86-1.58; p 0.30) for combination therapy. Other applications of the propensity score provided similar results, but were not significant for PDC. Tocilizumab was also associated with lower hazard of death alone in IPTW analysis (0.07; 0.02-0.17; p < 0.001). Conclusions: Tocilizumab might be useful in COVID-19 patients with a hyperinflammatory state and should be prioritized for randomized trials in this situatio

    Epidemiological trends of HIV/HCV coinfection in Spain, 2015-2019

    Get PDF
    Altres ajuts: Spanish AIDS Research Network; European Funding for Regional Development (FEDER).Objectives: We assessed the prevalence of anti-hepatitis C virus (HCV) antibodies and active HCV infection (HCV-RNA-positive) in people living with HIV (PLWH) in Spain in 2019 and compared the results with those of four similar studies performed during 2015-2018. Methods: The study was performed in 41 centres. Sample size was estimated for an accuracy of 1%. Patients were selected by random sampling with proportional allocation. Results: The reference population comprised 41 973 PLWH, and the sample size was 1325. HCV serostatus was known in 1316 PLWH (99.3%), of whom 376 (28.6%) were HCV antibody (Ab)-positive (78.7% were prior injection drug users); 29 were HCV-RNA-positive (2.2%). Of the 29 HCV-RNA-positive PLWH, infection was chronic in 24, it was acute/recent in one, and it was of unknown duration in four. Cirrhosis was present in 71 (5.4%) PLWH overall, three (10.3%) HCV-RNA-positive patients and 68 (23.4%) of those who cleared HCV after anti-HCV therapy (p = 0.04). The prevalence of anti-HCV antibodies decreased steadily from 37.7% in 2015 to 28.6% in 2019 (p < 0.001); the prevalence of active HCV infection decreased from 22.1% in 2015 to 2.2% in 2019 (p < 0.001). Uptake of anti-HCV treatment increased from 53.9% in 2015 to 95.0% in 2019 (p < 0.001). Conclusions: In Spain, the prevalence of active HCV infection among PLWH at the end of 2019 was 2.2%, i.e. 90.0% lower than in 2015. Increased exposure to DAAs was probably the main reason for this sharp reduction. Despite the high coverage of treatment with direct-acting antiviral agents, HCV-related cirrhosis remains significant in this population

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    Megaproyectos urbanos y productivos. Impactos socio-territoriales

    Get PDF
    El desarrollo de megaproyectos productivos trae consigo oportunidades para el crecimiento económico, la generación de empleos y el desarrollo regional. No obstante, en la actualidad, los grandes temas como la expansión urbana, el desarrollo industrial, las cementeras, la minería, el uso intensivo del agua y demás recursos naturales, preocupan a las comunidades por los impactos generados y porque en lo general, no consideran la racionalidad y responsabilidad ambiental y social hacia el entorno. En este contexto son diversos los estudios científicos que, en el marco de la política de económica imperante, intentan posicionarse como alternativas a proyectos económicos que confrontan los intereses particulares y comunitarios y que afectan la salud humana y ambiental. Megaproyectos urbanos y productivos. Impactos socio-territoriales, reúne veinticinco textos académicos sobre las afectaciones que éstos emprendimientos tienen para la sociedad y el entorno. Los temas expuestos recogen experiencias en el desarrollo urbano, industrial, turístico, portuario y aeroportuario, entre otros. Así mismo se retoman temas como la ética, la dialéctica, la política y la economía y su relación en el emprendimiento de megaproyectos. La búsqueda de esquemas productivos racionales y responsables con el entorno, que reivindiquen el derecho de las comunidades a un medio ambiente sano, a la preservación del territorio y sus recursos y de las formas de vida tradicionales, son los referentes para la realización del presente libro. Como elemento central se concibe el territorio como contenedor de identidad y vida, siendo preocupación y tema de estudio de la comunidad académica, las organizaciones de la sociedad civil y las redes de activistas organizados.UAEM, CONACyT, se

    GEODIVULGAR: Geología y Sociedad

    Get PDF
    Fac. de Ciencias GeológicasFALSEsubmitte
    corecore