27 research outputs found

    Modeling what we sample and sampling what we model: challenges for zooplankton model assessment

    Get PDF
    Zooplankton are the intermediate trophic level between phytoplankton and fish, and are an important component of carbon and nutrient cycles, accounting for a large proportion of the energy transfer to pelagic fishes and the deep ocean. Given zooplankton's importance, models need to adequately represent zooplankton dynamics. A major obstacle, though, is the lack of model assessment. Here we try and stimulate the assessment of zooplankton in models by filling three gaps. The first is that many zooplankton observationalists are unfamiliar with the biogeochemical, ecosystem, size-based and individual-based models that have zooplankton functional groups, so we describe their primary uses and how each typically represents zooplankton. The second gap is that many modelers are unaware of the zooplankton data that are available, and are unaccustomed to the different zooplankton sampling systems, so we describe the main sampling platforms and discuss their strengths and weaknesses for model assessment. Filling these gaps in our understanding of models and observations provides the necessary context to address the last gap—a blueprint for model assessment of zooplankton. We detail two ways that zooplankton biomass/abundance observations can be used to assess models: data wrangling that transforms observations to be more similar to model output; and observation models that transform model outputs to be more like observations. We hope that this review will encourage greater assessment of zooplankton in models and ultimately improve the representation of their dynamics

    Characterization of rhizobium tropici CIAT899 nodulation factors: the role of nodH and nodPQ genes in their sulfation

    Get PDF
    We have purified and characterized the nodulation factors produced by Rhizobium tropici CIAT899. This strain produces a large variety of nodulation factors, these being a mixture of sulfated or nonsulfated penta- or tetra-chitooligosaccharides to which any of six different fatty acyl moieties may be attached to nitrogen of the nanreducing terminal residue, In this mixture we have also found methylated or nonmethylated lipo-chitin oligosaccharides. Here we describe a novel lipo-chitin-oligosaccharide consisting of a linear backbone of 4 N-acetylglucosamine residues and one mannose that is the reducing-terminal residue and bearing a C18:1 fatty acyl moiety on the nonreducing terminal residue. In addition, we have identified, cloned, and sequenced R. tropici nodH and nodPQ genes, generated mutations in the nodH and nodQ genes, and tested the mutant strains far nodulation in Phaseolus and Leucaena plants, Our results indicate that the sulfate group present in wildtype Nod factors plays a major role in nodulation of Leucaena plants by strain CIAT899 of R. tropici.Microbial Biotechnolog

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    The CARMENES search for exoplanets around M dwarfs. First visual-channel radial-velocity measurements and orbital parameter updates of seven M-dwarf planetary systems

    Get PDF
    Stars and planetary system

    Regulatory roles of NPR1 in plant defense: regulation and function

    No full text
    Overcoming infection is a struggle that all eukaryotic organisms have to face in order to survive and evolve among ubiquitous microorganisms. Extensive research on plant defenses has revealed that defense signal transduction pathways form an interconnected network in which the signaling molecules salicylic acid (SA) and jasmonic acid (JA) play key roles. Previously, SA and JA signaling pathways have been shown to crosscommunicate. Cross-talk between defense signaling pathways is thought to provide the plant with a mechanism to activate defenses that are specifically active against the invader encountered

    A database of marine larval fish assemblages in Australian temperate and subtropical waters

    Get PDF
    Larval fishes are a useful metric of marine ecosystem state and change, as well as species-specific patterns in phenology. The high level of taxonomic expertise required to identify larval fishes to species level, and the considerable effort required to collect samples, make these data very valuable. Here we collate 3178 samples of larval fish assemblages, from 12 research projects from 1983-present, from temperate and subtropical Australian pelagic waters. This forms a benchmark for the larval fish assemblage for the region, and includes recent monitoring of larval fishes at coastal oceanographic reference stations. Comparing larval fishes among projects can be problematic due to differences in taxonomic resolution, and identifying all taxa to species is challenging, so this study reports a standard taxonomic resolution (of 218 taxa) for this region to help guide future research. This larval fish database serves as a data repository for surveys of larval fish assemblages in the region, and can contribute to analysis of climate-driven changes in the location and timing of the spawning of marine fishes

    Isolation and characterization of myogenic precursor cells from human cremaster muscle

    Get PDF
    Human myogenic precursor cells have been isolated and expanded from a number of skeletal muscles, but alternative donor biopsy sites must be sought after in diseases where muscle damage is widespread. Biopsy sites must be relatively accessible, and the biopsied muscle dispensable. Here, we aimed to histologically characterize the cremaster muscle with regard number of satellite cells and regenerative fibres, and to isolate and characterize human cremaster muscle-derived stem/precursor cells in adult male donors with the objective of characterizing this muscle as a novel source of myogenic precursor cells. Cremaster muscle biopsies (or adjacent non-muscle tissue for negative controls; N = 19) were taken from male patients undergoing routine surgery for urogenital pathology. Myosphere cultures were derived and tested for their in vitro and in vivo myogenic differentiation and muscle regeneration capacities. Cremaster-derived myogenic precursor cells were maintained by myosphere culture and efficiently differentiated to myotubes in adhesion culture. Upon transplantation to an immunocompromised mouse model of cardiotoxin-induced acute muscle damage, human cremaster-derived myogenic precursor cells survived to the transplants and contributed to muscle regeneration. These precursors are a good candidate for cell therapy approaches of skeletal muscle. Due to their location and developmental origin, we propose that they might be best suited for regeneration of the rhabdosphincter in patients undergoing stress urinary incontinence after radical prostatectomy

    Molecular mechanisms involved in induced resistance signaling in Arabidopsis

    No full text
    Evolution has provided plants with sophisticated defensive strategies to "perceive" attack by pathogens and insects, and to translate that "perception" into an appropriate adaptive response. Plant innate immunity is based on a surprisingly complex response that is highly flexible in its capacity to recognize and respond to the invader encountered. In the past years, we explored Arabidopsis as a model to study the molecular basis of rhizobacteria-induced systemic resistance (ISR). We discovered novel components of the ISR signaling pathway and revealed that priming for augmented expression of pathogenresponsive genes plays an important role in this type of induced resistance. Currently our research is also focused on the question: how are plants capable of integrating microbial- and insect-induced signals into defense responses that are specifically directed against the attacker? The alarm signals salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) are major regulators of plant defense. Their signaling pathways cross-communicate, providing the plant with a regulatory potential to fine-tune its defense reaction. We discovered that the regulatory protein NPR1 functions as a modulator in cross-talk between SA and JA, thereby helping the plant to "decide" which defensive strategy to follow, depending on the type of attacker encountered, and that this function of NPR1 is conserved among Arabidopsis accessions all over the world, suggesting an importany role for plant survival
    corecore