877 research outputs found
Bimodal distribution of free tropospheric ozone over the tropical western Pacific revealed by airborne observations
A recent airborne field campaign over the remote western Pacific obtained the first intensive in situ ozone sampling over the warm pool region from oceanic surface to 15-km altitude (near 360-K potential temperature level). The new data set quantifies ozone in the tropical tropopause layer under significant influence of convective outflow. The analysis further reveals a bimodal distribution of free tropospheric ozone mixing ratio. A primary mode, narrowly distributed around 20-ppbv, dominates the troposphere from the surface to 15-km. A secondary mode, broadly distributed with a 60-ppbv modal value, is prominent between 3 and 8-km (320-K to 340-K potential temperature levels). The latter mode occurs as persistent layers of ozone-rich drier air and is characterized by relative humidity under 45%. Possible controlling mechanisms are discussed. These findings provide new insight into the physical interpretation of the >S>-shaped mean ozone profiles in the tropics.Peer Reviewe
Super-conservative interpretation of muon g-2 results applied to supersymmetry
The recent developments in theory and experiment related to the anomalous
magnetic moment of the muon are applied to supersymmetry. We follow a very
cautious course, demanding that the supersymmetric contributions fit within
five standard deviations of the difference between experiment and the standard
model prediction. Arbitrarily small supersymmetric contributions are then
allowed, so no upper bounds on superpartner masses result. Nevertheless,
non-trivial exclusions are found. We characterize the substantial region of
parameter space ruled out by this analysis that has not been probed by any
previous experiment. We also discuss some implications of the results for
forthcoming collider experiments.Comment: 10 pages, latex, 3 fig
Coupled dark matter-dark energy in light of near Universe observations
Cosmological analysis based on currently available observations are unable to
rule out a sizeable coupling among the dark energy and dark matter fluids. We
explore a variety of coupled dark matter-dark energy models, which satisfy
cosmic microwave background constraints, in light of low redshift and near
universe observations. We illustrate the phenomenology of different classes of
dark coupling models, paying particular attention in distinguishing between
effects that appear only on the expansion history and those that appear in the
growth of structure. We find that while a broad class of dark coupling models
are effectively models where general relativity (GR) is modified --and thus can
be probed by a combination of tests for the expansion history and the growth of
structure--, there is a class of dark coupling models where gravity is still
GR, but the growth of perturbations is, in principle modified. While this
effect is small in the specific models we have considered, one should bear in
mind that an inconsistency between reconstructed expansion history and growth
may not uniquely indicate deviations from GR. Our low redshift constraints
arise from cosmic velocities, redshift space distortions and dark matter
abundance in galaxy voids. We find that current data constrain the
dimensionless coupling to be |xi|<0.2, but prospects from forthcoming data are
for a significant improvement. Future, precise measurements of the Hubble
constant, combined with high-precision constraints on the growth of structure,
could provide the key to rule out dark coupling models which survive other
tests. We shall exploit as well weak equivalence principle violation arguments,
which have the potential to highly disfavour a broad family of coupled models.Comment: 34 pages, 6 figures; changes to match published versio
Bottom-Tau Unification in SUSY SU(5) GUT and Constraints from b to s gamma and Muon g-2
An analysis is made on bottom-tau Yukawa unification in supersymmetric (SUSY)
SU(5) grand unified theory (GUT) in the framework of minimal supergravity, in
which the parameter space is restricted by some experimental constraints
including Br(b to s gamma) and muon g-2. The bottom-tau unification can be
accommodated to the measured branching ratio Br(b to s gamma) if superparticle
masses are relatively heavy and higgsino mass parameter \mu is negative. On the
other hand, if we take the latest muon g-2 data to require positive SUSY
contributions, then wrong-sign threshold corrections at SUSY scale upset the
Yukawa unification with more than 20 percent discrepancy. It has to be
compensated by superheavy threshold corrections around the GUT scale, which
constrains models of flavor in SUSY GUT. A pattern of the superparticle masses
preferred by the three requirements is also commented.Comment: 21pages, 6figure
A Survey of Volunteered Open Geo-Knowledge Bases in the Semantic Web
Over the past decade, rapid advances in web technologies, coupled with
innovative models of spatial data collection and consumption, have generated a
robust growth in geo-referenced information, resulting in spatial information
overload. Increasing 'geographic intelligence' in traditional text-based
information retrieval has become a prominent approach to respond to this issue
and to fulfill users' spatial information needs. Numerous efforts in the
Semantic Geospatial Web, Volunteered Geographic Information (VGI), and the
Linking Open Data initiative have converged in a constellation of open
knowledge bases, freely available online. In this article, we survey these open
knowledge bases, focusing on their geospatial dimension. Particular attention
is devoted to the crucial issue of the quality of geo-knowledge bases, as well
as of crowdsourced data. A new knowledge base, the OpenStreetMap Semantic
Network, is outlined as our contribution to this area. Research directions in
information integration and Geographic Information Retrieval (GIR) are then
reviewed, with a critical discussion of their current limitations and future
prospects
Are there eta-Helium bound states?
Using multiple scattering theory the scattering lengths of mesons on
helium nuclei are calculated and checked against final state
interactions from the He and He
reactions. The existence of an He quasibound state is indicated.Comment: revtex, 23 pages, 3 figures available by fax or mai
Hidden vector dark matter
We show that dark matter could be made of massive gauge bosons whose
stability doesn't require to impose by hand any discrete or global symmetry.
Stability of gauge bosons can be guaranteed by the custodial symmetry
associated to the gauge symmetry and particle content of the model. The
particle content we consider to this end is based on a hidden sector made of a
vector multiplet associated to a non-abelian gauge group and of a scalar
multiplet charged under this gauge group. The hidden sector interacts with the
Standard Model particles through the Higgs portal quartic scalar interaction in
such a way that the gauge bosons behave as thermal WIMPS. This can lead easily
to the observed dark matter relic density in agreement with the other various
constraints, and can be tested experimentally in a large fraction of the
parameter space. In this model the dark matter direct detection rate and the
annihilation cross section can decouple if the Higgs portal interaction is
weak.Comment: 13 pages, 7 figures, JHEP published version (2009) + update of
section 7 (reference to arXiv:0912.4496
Supersymmetric Dark Matter and Yukawa Unification
An analysis of supersymmetric dark matter under the Yukawa unification
constraint is given. The analysis utilizes the recently discovered region of
the parameter space of models with gaugino mass nonuniversalities where large
negative supersymmetric corrections to the b quark mass appear to allow
unification for a positive sign consistent with the and constraints. In the present analysis we use the
revised theoretical determination of ()
in computing the difference which takes account of
a reevaluation of the light by light contribution which has a positive sign.
The analysis shows that the region of the parameter space with
nonuniversalities of the gaugino masses which allows for unification of Yukawa
couplings also contains regions which allow satisfaction of the relic density
constraint. Specifically we find that the lightest neutralino mass consistent
with the relic density constraint, unification for SU(5) and
unification for SO(10) in addition to other constraints lies in the region
below 80 GeV. An analysis of the maximum and the minimum neutralino-proton
scalar cross section for the allowed parameter space including the effect of a
new determination of the pion-nucleon sigma term is also given. It is found
that the full parameter space for this class of models can be explored in the
next generation of proposed dark matter detectors.Comment: 28 pages,nLatex including 5 fig
Measurement of and charged current inclusive cross sections and their ratio with the T2K off-axis near detector
We report a measurement of cross section and the first measurements of the cross section
and their ratio
at (anti-)neutrino energies below 1.5
GeV. We determine the single momentum bin cross section measurements, averaged
over the T2K -flux, for the detector target material (mainly
Carbon, Oxygen, Hydrogen and Copper) with phase space restricted laboratory
frame kinematics of 500 MeV/c. The
results are and $\sigma(\nu)=\left( 2.41\
\pm0.022{\rm{(stat.)}}\pm0.231{\rm (syst.)}\ \right)\times10^{-39}^{2}R\left(\frac{\sigma(\bar{\nu})}{\sigma(\nu)}\right)=
0.373\pm0.012{\rm (stat.)}\pm0.015{\rm (syst.)}$.Comment: 18 pages, 8 figure
Measurements of long-range near-side angular correlations in TeV proton-lead collisions in the forward region
Two-particle angular correlations are studied in proton-lead collisions at a
nucleon-nucleon centre-of-mass energy of TeV, collected
with the LHCb detector at the LHC. The analysis is based on data recorded in
two beam configurations, in which either the direction of the proton or that of
the lead ion is analysed. The correlations are measured in the laboratory
system as a function of relative pseudorapidity, , and relative
azimuthal angle, , for events in different classes of event
activity and for different bins of particle transverse momentum. In
high-activity events a long-range correlation on the near side, , is observed in the pseudorapidity range . This
measurement of long-range correlations on the near side in proton-lead
collisions extends previous observations into the forward region up to
. The correlation increases with growing event activity and is found
to be more pronounced in the direction of the lead beam. However, the
correlation in the direction of the lead and proton beams are found to be
compatible when comparing events with similar absolute activity in the
direction analysed.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-040.htm
- âŠ