61 research outputs found

    A Citizen\u27s Handbook: South Dakota Governmental Finance and Employment

    Get PDF
    This publication can assist South Dakotans to obtain a better understanding of, and to engage in more active participation in their state and local governments. This understanding and participation require data and a certain amount of interpretative information on the operations of state and local governments in South Dakota. This publication will not answer all questions. Yet, it will answer many questions and provide the basis for further exploration of the operations of state and local governments in South Dakota

    Neutron emissions in brittle rocks during compression tests: Monotonic vs cyclic loading

    No full text
    Neutron emission measurements, by means of 3He devices and neutron bubble detectors, were performed during two different kinds of compression tests on brittle rocks: (i) under displacement control, and (ii) under cyclic loading. The material used for the tests was Green Luserna Granite, with different specimen sizes and shapes, and consequently with different brittleness numbers. Since the analyzed material contains iron, our conjecture is that piezonuclear reactions involving fission of iron into aluminum, or into magnesium and silicon, should have occurred during compression damage and failure. Some studies have been already conducted on the different forms of energy emitted during the failure of brittle materials. They are based on the signals captured by acoustic emission measurement systems, or on the detection of electromagnetic charge. On the other hand, piezonuclear neutron emissions from very brittle rock specimens in compression have been discovered only very recently. In this paper, the authors analyse this phenomenon from an experimental point of vie

    Statistical properties of microcracking in polyurethane foams under tensile test, influence of temperature and density

    Get PDF
    We report tensile failure experiments on polyurethane (PU) foams. Experiments have been performed by imposing a constant strain rate. We work on heterogeneous materials for whom the failure does not occur suddenly and can develop as a multistep process through a succession of microcracks that end at pores. The acoustic energy and the waiting times between acoustic events follow power-law distributions. This remains true while the foam density is varied. However, experiments at low temperatures (PU foams more brittle) have not yielded power-laws for the waiting times. The cumulative acoustic energy has no power law divergence at the proximity of the failure point which is qualitatively in agreement with other experiments done at imposed strain. We notice a plateau in cumulative acoustic energy that seems to occur when a single crack starts to propagate

    Comparison of air displacement plethysmography to hydrostatic weighing for estimating total body density in children

    Get PDF
    BACKGROUND: The purpose of this study was to examine the accuracy of total body density and percent body fat (% fat) using air displacement plethysmography (ADP) and hydrostatic weighing (HW) in children. METHODS: Sixty-six male and female subjects (40 males: 12.4 ± 1.3 yrs, 47.4 ± 14.8 kg, 155.4 ± 11.9 cm, 19.3 ± 4.1 kg/m(2); 26 females: 12.0 ± 1.9 yrs, 41.4 ± 7.7 kg, 152.1 ± 8.9 cm, 17.7 ± 1.7 kg/m(2)) were tested using ADP and HW with ADP always preceding HW. Accuracy, precision, and bias were examined in ADP with HW serving as the criterion method. Lohman's equations that are child specific for age and gender were used to convert body density to % fat. Regression analysis determined the accuracy of ADP and potential bias between ADP and HW using Bland-Altman analysis. RESULTS: For the entire group (Y = 0.835x + 0.171, R(2 )= 0.84, SEE = 0.007 g/cm(3)) and for the males (Y = 0.837x + 0.174, R(2 )= 0.90, SEE = 0.006 g/cm(3)) the regression between total body density by HW and by ADP significantly deviated from the line of identity. However in females, the regression between total body density by HW and ADP did not significantly deviate from the line of identity (Y = 0.750x + 0.258, R(2 )= 0.55, SEE = 0.008 g/cm(3)). The regression between % fat by HW and ADP for the group (Y = 0.84x + 3.81, R(2 )= 0.83, SEE = 3.35 % fat) and for the males (Y = 0.84x + 3.25, R(2 )= 0.90, SEE = 3.00 % fat) significantly deviated from the line of identity. However, in females the regression between % fat by HW and ADP did not significantly deviate from the line of identity (Y = 0.81x + 5.17, R(2 )= 0.56, SEE = 3.80 % fat). Bland-Altman analysis revealed no bias between HW total body density and ADP total body density for the entire group (R = 0.-22; P = 0.08) or for females (R = 0.02; P = 0.92), however bias existed in males (R = -0.37; P ≤ 0.05). Bland-Altman analysis revealed no bias between HW and ADP % fat for the entire group (R = 0.21; P = 0.10) or in females (R = 0.10; P = 0.57), however bias was indicated for males by a significant correlation (R = 0.36; P ≤ 0.05), with ADP underestimating % fat at lower fat values and overestimating at the higher % fat values. CONCLUSION: A significant difference in total body density and % fat was observed between ADP and HW in children 10–15 years old with a potential gender difference being detected. Upon further investigation it was revealed that the study was inadequately powered, thus we recommend that larger studies that are appropriately powered be conducted to better understand this potential gender difference

    Validity of new child-specific thoracic gas volume prediction equations for air-displacement plethysmography

    Get PDF
    BACKGROUND: To determine the validity of the recently developed child-specific thoracic gas volume (TGV) prediction equations for use in air-displacement plethysmography (ADP) in diverse pediatric populations. METHODS: Three distinct populations were studied: European American and African American children living in Birmingham, Alabama and European children living in Lisbon, Portugal. Each child completed a standard ADP testing protocol, including a measured TGV according to the manufactures software criteria. Measured TGV was compared to the predicted TGV from current adult-based ADP proprietary equations and to the recently developed child-specific TGV equations of Fields et al. Similarly, percent body fat, derived using the TGV prediction equations, was compared to percent body fat derived using measured TGV. RESULTS: Predicted TGV from adult-based equations was significantly different from measured TGV in girls from each of the three ethnic groups (P < 0.05), however child-specific TGV estimates did not significantly differ from measured TGV in any of the ethnic or gender groups. Percent body fat estimates using adult-derived and child-specific TGV estimates did not differ significantly from percent body fat measures using measured TGV in any of the groups. CONCLUSION: The child-specific TGV equations developed by Fields et al. provided a modest improvement over the adult-based TGV equations in an ethnically diverse group of children

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe

    Energy dissipation via acoustic emission in ductile crack initiation

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10704-016-0096-8.This article presents a modeling approach to estimate the energy release due to ductile crack initiation in conjunction to the energy dissipation associated with the formation and propagation of transient stress waves typically referred to as acoustic emission. To achieve this goal, a ductile fracture problem is investigated computationally using the finite element method based on a compact tension geometry under Mode I loading conditions. To quantify the energy dissipation associated with acoustic emission, a crack increment is produced given a pre-determined notch size in a 3D cohesive-based extended finite element model. The computational modeling methodology consists of defining a damage initiation state from static simulations and linking such state to a dynamic formulation used to evaluate wave propagation and related energy redistribution effects. The model relies on a custom traction separation law constructed using full field deformation measurements obtained experimentally using the digital image correlation method. The amount of energy release due to the investigated first crack increment is evaluated through three different approaches both for verification purposes and to produce an estimate of the portion of the energy that radiates away from the crack source in the form of transient waves. The results presented herein propose an upper bound for the energy dissipation associated to acoustic emission, which could assist the interpretation and implementation of relevant nondestructive evaluation methods and the further enrichment of the understanding of effects associated with fracture
    corecore