870 research outputs found
Masonry Walls Strengthened with Vegetal Fabric Reinforced Cementitious Matrix (FRCM) Composites
Fabric-reinforced cementitious matrices (FCRMs) are promising composite materials for the retrofitting and reinforcement of existing structures. In this study, vegetal meshes consisting of hemp and cotton coated with epoxy were manufactured and combined with a cementitious matrix to strengthen masonry walls. A synthetic glass fibre mesh was also tested. Several walls were manufactured, strengthened, and tested under cyclic loading. The results allow us to compare the performances of different mesh configurations in terms of size and materials. All strengthening solutions significantly increased shear strength capacity and the ability to dissipate energy compared to unreinforced walls. Further, all strengthened walls exhibited multi-track pattern distributions and achieved distortion capacity improvements of up to 300%. Indicators of stiffness, energy dissipation, damping, residual deformation, and damage allow us to compare the strengthening performances of different solutions. The vegetal solutions provided superior efficiency compared to the glass-FRCM strengthened walls. Additionally, the use of a larger volume of vegetal fibres reduces the consumption of cement and can provide a sustainable solution. The main failure mechanism of the vegetal-FCRMs was debonding, which can be remedied by improvements to material interfaces
Recommended from our members
Homogeneous catalysis under ultra-dilute conditions: TAML/NaClO oxidation of persistent metaldehyde
This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in Journal of the American Chemical Society, copyright © American Chemical Society after peer review. To access the final edited and published work see https://doi.org/10.1021/jacs.6b11145TAML activators enable homogenous oxidation catalysis where the catalyst and substrate (S) are ultra-dilute (pM–low μM) and the oxidant is very dilute (high nM–low mM). Water contamination by exceptionally persistent micropollutants (MPs), including metaldehyde (Met), provides an ideal space for determining the characteristics and utilitarian limits of this ultradilute catalysis. The low MP concentrations decrease throughout catalysis with S oxidation (kII) and catalyst inactivation (ki) competing for the active catalyst. The percentage of substrate converted (%Cvn) can be increased by discovering methods to increase kII/ki. Here we show that NaClO extends catalyst lifetime to increase the Met turnover number (TON) threefold compared with H2O2, highlighting the importance of oxidant choice as a design tool in TAML systems. Met oxidation studies (pH 7, D2O, 0.01 M phosphate, 25 °C) monitored by 1H NMR spectroscopy show benign acetic acid as the only significant product. Analysis of TAML/NaClO treated Met solutions employing successive identical catalyst doses revealed that the processes can be modeled by the recently published relationship between the initial and final [S] (S0 and S∞, respectively), the initial [catalyst] (FeTot) and kII/ki. Consequently, this study establishes that S is proportional to S0 and that the %Cvn is conserved across all catalyst doses in multicatalyst-dose processes because the rate of the kII process depends on [S] while that of the ki process does not. A general tool for determining the FeTot required to effect a desired %Cvn is presented. Examination of the dependence of TON on kII/ki and FeTot at a fixed S0 indicates that for any TAML process employing FeTot < 1 10-6 M, small catalyst doses are not more efficient than one large dose.T.J.C thanks the Heinz Endowments for funding. NMR instrumentation at CMU was partially supported by NSF (CHE-0130903 and CHE-1039870)
Envolvente del Centro de Arte Botín en Santander. Estudio de viabilidad de la solución con discos cerámicos roscados sobre chapa de aluminio
The Botín Art Centre in Santander has a geometrically complex and constructively sophisticated architectural envelope. What stands out is its outer pearly sheen ceramic cladding. It consists of an innovative disc-shaped ceramic anchoring system attached to an aluminium tray by means of a threaded rod fixed with epoxy resin. In this article, we will address the technical development and on-site set up of this continuous enclosure. We will also comment on the results of the test runs performed to prove the viability of this cladding in Santander’s maritime climate.El Centro de Arte Botín de Santander presenta una envolvente compleja geométricamente y sofisticada constructivamente de la que destaca su última capa cerámica de reflejos nacarados. Esta capa consiste en un novedoso sistema de anclaje de discos cerámicos a una bandeja de aluminio mediante varilla roscada fijada con resina epoxi. En este artículo se tratan los aspectos de desarrollo técnico y montaje en obra de este cerramiento continuo y se muestran algunos de los resultados de la campaña de ensayos realizada para demostrar la viabilidad de esta capa ante los requerimientos del clima marítimo en Santander
The best fit for the observed galaxy Counts-in-Cell distribution function
The Sloan Digital Sky Survey (SDSS) is the first dense redshift survey
encompassing a volume large enough to find the best analytic probability
density function that fits the galaxy Counts-in-Cells distribution ,
the frequency distribution of galaxy counts in a volume . Different analytic
functions have been previously proposed that can account for some of the
observed features of the observed frequency counts, but fail to provide an
overall good fit to this important statistical descriptor of the galaxy
large-scale distribution. Our goal is to find the probability density function
that better fits the observed Counts-in-Cells distribution . We have
made a systematic study of this function applied to several samples drawn from
the SDSS. We show the effective ways to deal with incompleteness of the sample
(masked data) in the calculation of . We use LasDamas simulations to
estimate the errors in the calculation. We test four different distribution
functions to find the best fit: the Gravitational Quasi-Equilibrium
distribution, the Negative Binomial Distribution, the Log Normal distribution
and the Log Normal Distribution including a bias parameter. In the two latter
cases, we apply a shot-noise correction to the distributions assuming the local
Poisson model. We show that the best fit for the Counts-in-Cells distribution
function is provided by the Negative Binomial distribution. In addition, at
large scales the Log Normal distribution modified with the inclusion of the
bias term also performs a satisfactory fit of the empirical values of .
Our results demonstrate that the inclusion of a bias term in the Log Normal
distribution is necessary to fit the observed galaxy Count-in-Cells
distribution function.Comment: 12 pages, 16 figures. Accepted for publication in Astronomy &
Astrophysic
The biological origin of linguistic diversity
In contrast with animal communication systems, diversity is characteristic of almost every aspect of human language. Languages variously employ tones, clicks, or manual signs to signal differences in meaning; some languages lack the noun-verb distinction (e.g., Straits Salish), whereas others have a proliferation of fine-grained syntactic categories (e.g., Tzeltal); and some languages do without morphology (e.g., Mandarin), while others pack a whole sentence into a single word (e.g., Cayuga). A challenge for evolutionary biology is to reconcile the diversity of languages with the high degree of biological uniformity of their speakers. Here, we model processes of language change and geographical dispersion and find a consistent pressure for flexible learning, irrespective of the language being spoken. This pressure arises because flexible learners can best cope with the observed high rates of linguistic change associated with divergent cultural evolution following human migration. Thus, rather than genetic adaptations for specific aspects of language, such as recursion, the coevolution of genes and fast-changing linguistic structure provides the biological basis for linguistic diversity. Only biological adaptations for flexible learning combined with cultural evolution can explain how each child has the potential to learn any human language
The alhambra survey: evolution of galaxy spectral segregation
We study the clustering of galaxies as a function of spectral type and redshift in the range 0.35 <z <1.1 using data from the Advanced Large Homogeneous Area Medium Band Redshift Astronomical (ALHAMBRA) survey. The data cover 2.381 deg2 in 7 fields, after applying a detailed angular selection mask, with accurate photometric redshifts down to IAB <24. From this catalog we draw five fixed number density redshift-limited bins. We estimate the clustering evolution for two different spectral populations selected using the ALHAMBRA-based photometric templates: quiescent and star-forming galaxies. For each sample we measure the real-space clustering using the projected correlation function. Our calculations are performed over the range [0.03, 10.0] h-1 Mpc, allowing us to find a steeper trend for Mpc, which is especially clear for star-forming galaxies. Our analysis also shows a clear early differentiation in the clustering properties of both populations: star-forming galaxies show weaker clustering with evolution in the correlation length over the analyzed redshift range, while quiescent galaxies show stronger clustering already at high redshifts and no appreciable evolution. We also perform the bias calculation where similar segregation is found, but now it is among the quiescent galaxies where a growing evolution with redshift is clearer (abrigatted). These findings clearly corroborate the well-known color-density relation, confirming that quiescent galaxies are mainly located in dark matter halos that are more massive than those typically populated by star-forming galaxies.Ministerio de Economía y Competitividad y FEDER AYA2010-22111-C03-02 AYA2013-48623-C2-2 AYA2012-39620 AYA2013-40611-P AYA2013-42227-P AYA2013-43188-P AYA2013-48623-C2-1 ESP2013-48274 AYA2014-58861-C3-1Junta de Andalucía TIC114 JA2828 P10-FQM-644
The ALHAMBRA survey: evolution of galaxy spectral segregation
We study the clustering of galaxies as a function of spectral type and
redshift in the range using data from the Advanced Large
Homogeneous Area Medium Band Redshift Astronomical (ALHAMBRA) survey. The data
cover 2.381 deg in 7 fields, after applying a detailed angular selection
mask, with accurate photometric redshifts [] down to
. From this catalog we draw five fixed number density,
redshift-limited bins. We estimate the clustering evolution for two different
spectral populations selected using the ALHAMBRA-based photometric templates:
quiescent and star-forming galaxies. For each sample, we measure the real-space
clustering using the projected correlation function. Our calculations are
performed over the range Mpc, allowing us to find a
steeper trend for Mpc, which is especially clear for
star-forming galaxies. Our analysis also shows a clear early differentiation in
the clustering properties of both populations: star-forming galaxies show
weaker clustering with evolution in the correlation length over the analysed
redshift range, while quiescent galaxies show stronger clustering already at
high redshifts, and no appreciable evolution. We also perform the bias
calculation where similar segregation is found, but now it is among the
quiescent galaxies where a growing evolution with redshift is clearer. These
findings clearly corroborate the well known colour-density relation, confirming
that quiescent galaxies are mainly located in dark matter halos that are more
massive than those typically populated by star-forming galaxies.Comment: 14 pages, 9 figures, accepted by Ap
The ALHAMBRA survey : Estimation of the clustering signal encoded in the cosmic variance
The relative cosmic variance () is a fundamental source of
uncertainty in pencil-beam surveys and, as a particular case of count-in-cell
statistics, can be used to estimate the bias between galaxies and their
underlying dark-matter distribution. Our goal is to test the significance of
the clustering information encoded in the measured in the ALHAMBRA
survey. We measure the cosmic variance of several galaxy populations selected
with band luminosity at as the intrinsic dispersion in
the number density distribution derived from the 48 ALHAMBRA subfields. We
compare the observational with the cosmic variance of the dark
matter expected from the theory, . This provides an
estimation of the galaxy bias . The galaxy bias from the cosmic variance is
in excellent agreement with the bias estimated by two-point correlation
function analysis in ALHAMBRA. This holds for different redshift bins, for red
and blue subsamples, and for several band luminosity selections. We find
that increases with the band luminosity and the redshift, as expected
from previous work. Moreover, red galaxies have a larger bias than blue
galaxies, with a relative bias of . Our results
demonstrate that the cosmic variance measured in ALHAMBRA is due to the
clustering of galaxies and can be used to characterise the affecting
pencil-beam surveys. In addition, it can also be used to estimate the galaxy
bias from a method independent of correlation functions.Comment: Astronomy and Astrophysics, in press. 9 pages, 4 figures, 3 table
The ALHAMBRA survey : band luminosity function of quiescent and star-forming galaxies at by PDF analysis
Our goal is to study the evolution of the band luminosity function (LF)
since using ALHAMBRA data. We used the photometric redshift and the
band selection magnitude probability distribution functions (PDFs) of those
ALHAMBRA galaxies with mag to compute the posterior LF. We
statistically studied quiescent and star-forming galaxies using the template
information encoded in the PDFs. The LF covariance matrix in
redshift-magnitude-galaxy type space was computed, including the cosmic
variance. That was estimated from the intrinsic dispersion of the LF
measurements in the 48 ALHAMBRA sub-fields. The uncertainty due to the
photometric redshift prior is also included in our analysis. We modelled the LF
with a redshift-dependent Schechter function affected by the same selection
effects than the data. The measured ALHAMBRA LF at and the
evolving Schechter parameters both for quiescent and star-forming galaxies
agree with previous results in the literature. The estimated redshift evolution
of is and , and of is
and . The measured faint-end slopes are and . We find a significant
population of faint quiescent galaxies, modelled by a second Schechter function
with slope . We find a factor decrease in the
luminosity density of star-forming galaxies, and a factor
increase in the of quiescent ones since , confirming the continuous
build-up of the quiescent population with cosmic time. The contribution of the
faint quiescent population to increases from 3% at to 6% at .
The developed methodology will be applied to future multi-filter surveys such
as J-PAS.Comment: Accepted for publication in Astronomy and Astrophysics. 25 pages, 20
figures, 7 table
Accidental stability of dark matter
We propose that dark matter is stable as a consequence of an accidental Z2
that results from a flavour-symmetry group which is the double-cover group of
the symmetry group of one of the regular geometric solids. Although
model-dependent, the phenomenology resembles that of a generic Higgs portal
dark matter scheme.Comment: 12 pages, final version, published in JHE
- …