89 research outputs found

    Loss of Extreme Long-Range Enhancers in Human Neural Crest Drives a Craniofacial Disorder

    Get PDF
    Non-coding mutations at the far end of a large gene desert surrounding the SOX9 gene result in a human craniofacial disorder called Pierre Robin sequence (PRS). Leveraging a human stem cell differentiation model, we identify two clusters of enhancers within the PRS-associated region that regulate SOX9 expression during a restricted window of facial progenitor development at distances up to 1.45 Mb. Enhancers within the 1.45 Mb cluster exhibit highly synergistic activity that is dependent on the Coordinator motif. Using mouse models, we demonstrate that PRS phenotypic specificity arises from the convergence of two mechanisms: confinement of Sox9 dosage perturbation to developing facial structures through context-specific enhancer activity and heightened sensitivity of the lower jaw to Sox9 expression reduction. Overall, we characterize the longest-range human enhancers involved in congenital malformations, directly demonstrate that PRS is an enhanceropathy, and illustrate how small changes in gene expression can lead to morphological variation

    Gene-Centric Meta-Analysis of Lipid Traits in African, East Asian and Hispanic Populations

    Get PDF
    Meta-analyses of European populations has successfully identified genetic variants in over 100 loci associated with lipid levels, but our knowledge in other ethnicities remains limited. To address this, we performed dense genotyping of ∼2,000 candidate genes in 7,657 African Americans, 1,315 Hispanics and 841 East Asians, using the IBC array, a custom ∼50,000 SNP genotyping array. Meta-analyses confirmed 16 lipid loci previously established in European populations at genome-wide significance level, and found multiple independent association signals within these lipid loci. Initial discovery and in silico follow-up in 7,000 additional African American samples, confirmed two novel loci: rs5030359 within ICAM1 is associated with total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) (p=8.8×107andp=1.5×106(p = 8.8×10^{−7} and p = 1.5×10^{−6} respectively) and a nonsense mutation rs3211938 within CD36 is associated with high-density lipoprotein cholesterol (HDL-C) levels (p=13.5×1012)(p = 13.5×10^{−12}). The rs3211938-G allele, which is nearly absent in European and Asian populations, has been previously found to be associated with CD36 deficiency and shows a signature of selection in Africans and African Americans. Finally, we have evaluated the effect of SNPs established in European populations on lipid levels in multi-ethnic populations and show that most known lipid association signals span across ethnicities. However, differences between populations, especially differences in allele frequency, can be leveraged to identify novel signals, as shown by the discovery of ICAM1 and CD36 in the current report

    The diploid genome sequence of an Asian individual

    Get PDF
    Here we present the first diploid genome sequence of an Asian individual. The genome was sequenced to 36-fold average coverage using massively parallel sequencing technology. We aligned the short reads onto the NCBI human reference genome to 99.97% coverage, and guided by the reference genome, we used uniquely mapped reads to assemble a high-quality consensus sequence for 92% of the Asian individual's genome. We identified approximately 3 million single-nucleotide polymorphisms (SNPs) inside this region, of which 13.6% were not in the dbSNP database. Genotyping analysis showed that SNP identification had high accuracy and consistency, indicating the high sequence quality of this assembly. We also carried out heterozygote phasing and haplotype prediction against HapMap CHB and JPT haplotypes (Chinese and Japanese, respectively), sequence comparison with the two available individual genomes (J. D. Watson and J. C. Venter), and structural variation identification. These variations were considered for their potential biological impact. Our sequence data and analyses demonstrate the potential usefulness of next-generation sequencing technologies for personal genomics

    Loci influencing blood pressure identified using a cardiovascular gene-centric array

    Get PDF
    Blood pressure (BP) is a heritable determinant of risk for cardiovascular disease (CVD). To investigate genetic associations with systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP) and pulse pressure (PP), we genotyped 50 000 single-nucleotide polymorphisms (SNPs) that capture variation in 2100 candidate genes for cardiovascular phenotypes in 61 619 individuals of European ancestry from cohort studies in the USA and Europe. We identified novel associations between rs347591 and SBP (chromosome 3p25.3, in an intron of HRH1) and between rs2169137 and DBP (chromosome1q32.1 in an intron of MDM4) and between rs2014408 and SBP (chromosome 11p15 in an intron of SOX6), previously reported to be associated with MAP. We also confirmed 10 previously known loci associated with SBP, DBP, MAP or PP (ADRB1, ATP2B1, SH2B3/ATXN2, CSK, CYP17A1, FURIN, HFE, LSP1, MTHFR, SOX6) at array-wide significance (P 2.4 10(6)). We then replicated these associations in an independent set of 65 886 individuals of European ancestry. The findings from expression QTL (eQTL) analysis showed associations of SNPs in the MDM4 region with MDM4 expression. We did not find any evidence of association of the two novel SNPs in MDM4 and HRH1 with sequelae of high BP including coronary artery disease (CAD), left ventricular hypertrophy (LVH) or stroke. In summary, we identified two novel loci associated with BP and confirmed multiple previously reported associations. Our findings extend our understanding of genes involved in BP regulation, some of which may eventually provide new targets for therapeutic intervention.</p

    A genome-wide association study of anorexia nervosa suggests a risk locus implicated in dysregulated leptin signaling

    Get PDF
    J. Kaprio, A. Palotie, A. Raevuori-Helkamaa ja S. Ripatti ovat työryhmän Eating Disorders Working Group of the Psychiatric Genomics Consortium jäseniä. Erratum in: Sci Rep. 2017 Aug 21;7(1):8379, doi: 10.1038/s41598-017-06409-3We conducted a genome-wide association study (GWAS) of anorexia nervosa (AN) using a stringently defined phenotype. Analysis of phenotypic variability led to the identification of a specific genetic risk factor that approached genome-wide significance (rs929626 in EBF1 (Early B-Cell Factor 1); P = 2.04 x 10(-7); OR = 0.7; 95% confidence interval (CI) = 0.61-0.8) with independent replication (P = 0.04), suggesting a variant-mediated dysregulation of leptin signaling may play a role in AN. Multiple SNPs in LD with the variant support the nominal association. This demonstrates that although the clinical and etiologic heterogeneity of AN is universally recognized, further careful sub-typing of cases may provide more precise genomic signals. In this study, through a refinement of the phenotype spectrum of AN, we present a replicable GWAS signal that is nominally associated with AN, highlighting a potentially important candidate locus for further investigation.Peer reviewe

    GWAS Meta-Analysis of Suicide Attempt: Identification of 12 Genome-Wide Significant Loci and Implication of Genetic Risks for Specific Health Factors

    Get PDF
    Objective: Suicidal behavior is heritable and is a major cause of death worldwide. Two large-scale genome-wide association studies (GWASs) recently discovered and crossvalidated genome-wide significant (GWS) loci for suicide attempt (SA). The present study leveraged the genetic cohorts from both studies to conduct the largest GWAS metaanalysis of SA to date. Multi-ancestry and admixture-specific meta-analyses were conducted within groups of significant African, East Asian, and European ancestry admixtures. Methods: This study comprised 22 cohorts, including 43,871 SA cases and 915,025 ancestry-matched controls. Analytical methods across multi-ancestry and individual ancestry admixtures included inverse variance-weighted fixed-effects meta-analyses, followed by gene, gene-set, tissue-set, and drug-target enrichment, as well as summary-data-based Mendelian randomization with brain expression quantitative trait loci data, phenome-wide genetic correlation, and genetic causal proportion analyses. Results: Multi-ancestry and European ancestry admixture GWAS meta-analyses identified 12 risk loci at p values &lt;5×10-8. These loci were mostly intergenic and implicated DRD2, SLC6A9, FURIN, NLGN1, SOX5, PDE4B, and CACNG2. The multi-ancestry SNP-based heritability estimate of SA was 5.7% on the liability scale (SE=0.003, p=5.7×10-80). Significant brain tissue gene expression and drug set enrichment were observed. There was shared genetic variation of SA with attention deficit hyperactivity disorder, smoking, and risk tolerance after conditioning SA on both major depressive disorder and posttraumatic stress disorder. Genetic causal proportion analyses implicated shared genetic risk for specific health factors. Conclusions: This multi-ancestry analysis of suicide attempt identified several loci contributing to risk and establishes significant shared genetic covariation with clinical phenotypes. These findings provide insight into genetic factors associated with suicide attempt across ancestry admixture populations, in veteran and civilian populations, and in attempt versus death.</p

    GWAS Meta-Analysis of Suicide Attempt: Identification of 12 Genome-Wide Significant Loci and Implication of Genetic Risks for Specific Health Factors

    Get PDF
    OBJECTIVE: Suicidal behavior is heritable and is a major cause of death worldwide. Two large-scale genome-wide association studies (GWASs) recently discovered and cross-validated genome-wide significant (GWS) loci for suicide attempt (SA). The present study leveraged the genetic cohorts from both studies to conduct the largest GWAS meta-analysis of SA to date. Multi-ancestry and admixture-specific meta-analyses were conducted within groups of significant African, East Asian, and European ancestry admixtures. METHODS: This study comprised 22 cohorts, including 43,871 SA cases and 915,025 ancestry-matched controls. Analytical methods across multi-ancestry and individual ancestry admixtures included inverse variance-weighted fixed-effects meta-analyses, followed by gene, gene-set, tissue-set, and drug-target enrichment, as well as summary-data-based Mendelian randomization with brain expression quantitative trait loci data, phenome-wide genetic correlation, and genetic causal proportion analyses. RESULTS: Multi-ancestry and European ancestry admixture GWAS meta-analyses identified 12 risk loci at p values \u3c5×10 CONCLUSIONS: This multi-ancestry analysis of suicide attempt identified several loci contributing to risk and establishes significant shared genetic covariation with clinical phenotypes. These findings provide insight into genetic factors associated with suicide attempt across ancestry admixture populations, in veteran and civilian populations, and in attempt versus death

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    corecore