64 research outputs found

    П'ята міжнародна наукова-практична конференція «Комп’ютерне моделювання в хімії і технологіях та системах сталого розвитку»

    Get PDF
    Побудована модель керованого охолоджувача, що використовується в експериментальній установці відбору вологи. Використання моделі дозволяє вдосконалювати конструкцію охолоджувача та оптимізувати режими його роботи.The model controlled coolant used in the experimental plant selection moisture. Using the model allows improved cooling design and optimize the modes of its work.Построенная модель управляемого охладителя, который используется в экспериментальной установке отбора влаги. Использование модели позволяет совершенствовать конструкцию охладителя и оптимизировать режимы его работы

    Alignment of the ALICE Inner Tracking System with cosmic-ray tracks

    Get PDF
    37 pages, 15 figures, revised version, accepted by JINSTALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 micron in some cases (pixels). The sources of alignment information include survey measurements, and the reconstructed tracks from cosmic rays and from proton-proton collisions. The main track-based alignment method uses the Millepede global approach. An iterative local method was developed and used as well. We present the results obtained for the ITS alignment using about 10^5 charged tracks from cosmic rays that have been collected during summer 2008, with the ALICE solenoidal magnet switched off.Peer reviewe

    The ALICE experiment at the CERN LHC

    Get PDF
    ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 161626 m3 with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008

    Solvothermal sol-gel synthesis of TiO2 cellulose nanocrystalline composites

    No full text
    International audienceDue to its unique supramolecular structure, cellulose is widely used as a template agent, ensuring an easy structuring of anatase TiO2 particles with subsequent release after the organics burning. This work is devoted to the synthesis of microcrystalline cellulose-TiO2 (MCC-TiO2) composite photocatalyst by preserving the intermediate organic-inorganic structures. A series of the MCC-TiO2 materials were prepared via solvothermal sol-gel method in n-decane and caproic acid solvents and characterized by X-ray diffraction, transmission electron microscopy, IR spectroscopy, 1 Н NMR and TG/DSC methods. The photocatalytic activity of the prepared materials was evaluated by the decomposition of formic acid in aqueous solutions. The composites failed to be formed in n-decane, while in caproic acid, acting as solvent and reagent, anatase TiO2 nanoparticles were formed onto the crystalline domains of cellulose, tightly fixed due to covalent Ti-O-C bonds. The materials formed in caproic acid showed a higher photocatalytic activity, explained by a complementarity of the organic and inorganic components. The specific activity (normalized on TiO2 mass) of best synthetized composite materials was almost twice higher than that of Aeroxide P25 TiO2 reference photocatalyst

    Innovative microelectronic technologies for high-energy physics experiments

    No full text
    In the paper there are proposed new approaches to for creating the innovative design-technological solutions and manufacture technologies of advanced thin pixel array detector modules based on high resolution CMOS monolithic active pixel sensors as well as flexible adhesiveless aluminium-polyimide flexible boards and cables for high-energy physics experiments

    Optimization of base crystals for silicon solar cells of various destinations

    No full text
    The spectral dependences of reflection coefficient R(λ) for various light-receiving surface texture types ("inverted pyramids" and "V-grooves") of single crystal silicon wafers are presented as well as output and diode parameters of solar cells (SC) with p- and n-type silicon base crystals (Si-BC). Basing on comparative analysis of R(λ) dependences, the selection of an optimum type of Si-BC light-receiving surface texture is substantiated. Comparing the output and diode parameters of SC with Si-BC of p- and n-type conductivity, the development expediency of high-efficiency Si-SC with the n-type conductivity single crystals is substantiated
    corecore