142 research outputs found
Sex-differences in oral anticoagulation therapy in patients hospitalized with atrial fibrillation:a nationwide cohort study
Background Important disparities in the treatment and outcomes of women and men with atrial fibrillation (AF) are well recognized. Whether introduction of direct oral anticoagulants has reduced disparities in treatment is uncertain. Methods and Results All patients who had an incident hospitalization from 2010 to 2019 with nonvalvular AF in Scotland were included in the present cohort study. Community drug dispensing data were used to determine prescribed oral anticoagulation therapy and comorbidity status. Logistic regression modeling was used to evaluate patient factors associated with treatment with vitamin K antagonists and direct oral anticoagulants. A total of 172 989 patients (48% women [82 833 of 172 989]) had an incident hospitalization with nonvalvular AF in Scotland between 2010 and 2019. By 2019, factor Xa inhibitors accounted for 83.6% of all oral anticoagulants prescribed, while treatment with vitamin K antagonists and direct thrombin inhibitors declined to 15.9% and 0.6%, respectively. Women were less likely to be prescribed any oral anticoagulation therapy compared with men (adjusted odds ratio [aOR], 0.68 [95% CI, 0.67–0.70]). This disparity was mainly attributed to vitamin K antagonists (aOR, 0.68 [95% CI, 0.66–0.70]), while there was less disparity in the use of factor Xa inhibitors between women and men (aOR, 0.92 [95% CI, 0.90–0.95]). Conclusions Women with nonvalvular AF were significantly less likely to be prescribed vitamin K antagonists compared with men. Most patients admitted to the hospital in Scotland with incident nonvalvular AF are now treated with factor Xa inhibitors and this is associated with fewer treatment disparities between women and men
Microchromosomes are building blocks of bird, reptile, and mammal chromosomes
Microchromosomes, once considered unimportant shreds of the chicken genome, are gene-rich elements with a high GC content and few transposable elements. Their origin has been debated for decades. We used cytological and whole-genome sequence comparisons, and chromosome conformation capture, to trace their origin and fate in genomes of reptiles, birds, and mammals. We find that microchromosomes as well as macrochromosomes are highly conserved across birds and share synteny with single small chromosomes of the chordate amphioxus, attesting to their origin as elements of an ancient animal genome. Turtles and squamates (snakes and lizards) share different subsets of ancestral microchromosomes, having independently lost microchromosomes by fusion with other microchromosomes or macrochromosomes. Patterns of fusions were quite different in different lineages. Cytological observations show that microchromosomes in all lineages are spatially separated into a central compartment at interphase and during mitosis and meiosis. This reflects higher interaction between microchromosomes than with macrochromosomes, as observed by chromosome conformation capture, and suggests some functional coherence. In highly rearranged genomes fused microchromosomes retain most ancestral characteristics, but these may erode over evolutionary time; surprisingly, de novo microchromosomes have rapidly adopted high interaction. Some chromosomes of early-branching monotreme mammals align to several bird microchromosomes, suggesting multiple microchromosome fusions in a mammalian ancestor. Subsequently, multiple rearrangements fueled the extraordinary karyotypic diversity of therian mammals. Thus, microchromosomes, far from being aberrant genetic elements, represent fundamental building blocks of amniote chromosomes, and it is mammals, rather than reptiles and birds, that are atypical
New periodic variable stars coincident with ROSAT sources discovered using SuperWASP
We present optical lightcurves of 428 periodic variable stars coincident with ROSAT X-ray sources, detected using the first run of the SuperWASP photometric survey. Only 68 of these were previously recognised as periodic variables. A further 30 of these objects are previously known pre-main sequence stars, for which we detect a modulation period for the first time. Amongst the newly identified periodic variables, many appear to be close eclipsing binaries, their X-ray emission is presumably the result of RS CVn type behaviour. Others are probably BY Dra stars, pre-main sequence stars and other rapid rotators displaying enhanced coronal activity. A number of previously catalogued pulsating variables (RR Lyr stars and Cepheids) coincident with X-ray sources are also seen, but we show hat these are likely to be misclassifications. We identify four objects which are probable low mass eclipsing binary stars, based on
their very red colour and light curve morphology
Global epigenomic reconfiguration during mammalian brain development
DNA methylation is implicated in mammalian brain development and plasticity underlying learning and memory. We report the genome-wide composition, patterning, cell specificity, and dynamics of DNA methylation at single-base resolution in human and mouse frontal cortex throughout their lifespan. Widespread methylome reconfiguration occurs during fetal to young adult development, coincident with synaptogenesis. During this period, highly conserved non-CG methylation (mCH) accumulates in neurons, but not glia, to become the dominant form of methylation in the human neuronal genome. Moreover, we found an mCH signature that identifies genes escaping X-chromosome inactivation. Last, whole-genome single-base resolution 5-hydroxymethylcytosine (hmC) maps revealed that hmC marks fetal brain cell genomes at putative regulatory regions that are CG-demethylated and activated in the adult brain and that CG demethylation at these hmC-poised loci depends on Tet2 activity
Oligo-Miocene extensional tectonics and fluid flow across the Northern Snake Range detachment system, Nevada
The Northern Snake Range (Nevada) represents a spectacular example of a metamorphic core complex and exposes a complete section from the mylonitic footwall into the hanging wall of a fossil detachment system. Paired geochronological and stable isotopic data of mylonitic quartzite within the detachment footwall reveal that ductile deformation and infiltration of meteoric fluids occurred between 27 and 23 Ma. 40Ar/39Ar ages display complex recrystallization-cooling relationships but decrease systematically from 26.9 ± 0.2 Ma at the top to 21.3 ± 0.2 Ma at the bottom of footwall mylonite. Hydrogen isotope (δD) values in white mica are very low (-150 to-145 ‰) within the top 80-90 m of detachment footwall, in contrast to values obtained from the deeper part of the section where values range from-77 to-64 ‰, suggesting that time-integrated interaction between rock and meteoric fluid was restricted to the uppermost part of the mylonitic footwall. Pervasive mica-water hydrogen isotope exchange is difficult to reconcile with models of 40Ar loss during mylonitization solely by volume diffusion. Rather, we interpret the 40Ar/ 39Ar ages of white mica with low-δD values to date syn-mylonitic hydrogen and argon isotope exchange, and we conclude that the hydrothermal system of the Northern Snake Range was active during late Oligocene (27-23 Ma) and has been exhumed by the combined effects of ductile strain, extensional detachment faulting, and erosion. Copyright 2011 by the American Geophysical Union
Principles of 3D chromosome folding and evolutionary genome reshuffling in mammals.
Studying the similarities and differences in genomic interactions between species provides fertile grounds for determining the evolutionary dynamics underpinning genome function and speciation. Here, we describe the principles of 3D genome folding in vertebrates and show how lineage-specific patterns of genome reshuffling can result in different chromatin configurations. We (1) identified different patterns of chromosome folding in across vertebrate species (centromere clustering versus chromosomal territories); (2) reconstructed ancestral marsupial and afrotherian genomes analyzing whole-genome sequences of species representative of the major therian phylogroups; (3) detected lineage-specific chromosome rearrangements; and (4) identified the dynamics of the structural properties of genome reshuffling through therian evolution. We present evidence of chromatin configurational changes that result from ancestral inversions and fusions/fissions. We catalog the close interplay between chromatin higher-order organization and therian genome evolution and introduce an interpretative hypothesis that explains how chromatin folding influences evolutionary patterns of genome reshuffling. [Abstract copyright: Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.
IP-10-Mediated T Cell Homing Promotes Cerebral Inflammation over Splenic Immunity to Malaria Infection
Plasmodium falciparum malaria causes 660 million clinical cases with over 2 million deaths each year. Acquired host immunity limits the clinical impact of malaria infection and provides protection against parasite replication. Experimental evidence indicates that cell-mediated immune responses also result in detrimental inflammation and contribute to severe disease induction. In both humans and mice, the spleen is a crucial organ involved in blood stage malaria clearance, while organ-specific disease appears to be associated with sequestration of parasitized erythrocytes in vascular beds and subsequent recruitment of inflammatory leukocytes. Using a rodent model of cerebral malaria, we have previously found that the majority of T lymphocytes in intravascular infiltrates of cerebral malaria-affected mice express the chemokine receptor CXCR3. Here we investigated the effect of IP-10 blockade in the development of experimental cerebral malaria and the induction of splenic anti-parasite immunity. We found that specific neutralization of IP-10 over the course of infection and genetic deletion of this chemokine in knockout mice reduces cerebral intravascular inflammation and is sufficient to protect P. berghei ANKA-infected mice from fatality. Furthermore, our results demonstrate that lack of IP-10 during infection significantly reduces peripheral parasitemia. The increased resistance to infection observed in the absence of IP-10-mediated cell trafficking was associated with retention and subsequent expansion of parasite-specific T cells in spleens of infected animals, which appears to be advantageous for the control of parasite burden. Thus, our results demonstrate that modulating homing of cellular immune responses to malaria is critical for reaching a balance between protective immunity and immunopathogenesis
Three New Eclipsing White-dwarf - M-dwarf Binaries Discovered in a Search for Transiting Planets Around M-dwarfs
We present three new eclipsing white-dwarf / M-dwarf binary systems
discovered during a search for transiting planets around M-dwarfs. Unlike most
known eclipsing systems of this type, the optical and infrared emission is
dominated by the M-dwarf components, and the systems have optical colors and
discovery light curves consistent with being Jupiter-radius transiting planets
around early M-dwarfs. We detail the PTF/M-dwarf transiting planet survey, part
of the Palomar Transient Factory (PTF). We present a Graphics Processing Unit
(GPU)-based box-least-squares search for transits that runs approximately 8X
faster than similar algorithms implemented on general purpose systems. For the
discovered systems, we decompose low-resolution spectra of the systems into
white-dwarf and M-dwarf components, and use radial velocity measurements and
cooling models to estimate masses and radii for the white dwarfs. The systems
are compact, with periods between 0.35 and 0.45 days and semimajor axes of
approximately 2 solar radii (0.01 AU). We use the Robo-AO laser guide star
adaptive optics system to tentatively identify one of the objects as a triple
system. We also use high-cadence photometry to put an upper limit on the white
dwarf radius of 0.025 solar radii (95% confidence) in one of the systems. We
estimate that 0.08% (90% confidence) of M-dwarfs are in these short-period,
post-common-envelope white-dwarf / M-dwarf binaries where the optical light is
dominated by the M-dwarf. Similar eclipsing binary systems can have arbitrarily
small eclipse depths in red bands and generate plausible small-planet-transit
light curves. As such, these systems are a source of false positives for
M-dwarf transiting planet searches. We present several ways to rapidly
distinguish these binaries from transiting planet systems.Comment: 14 pages, 14 figures, submitted to Ap
DNA Methylation of the First Exon Is Tightly Linked to Transcriptional Silencing
Tissue specific patterns of methylated cytosine residues vary with age, can be altered by environmental factors, and are often abnormal in human disease yet the cellular consequences of DNA methylation are incompletely understood. Although the bodies of highly expressed genes are often extensively methylated in plants, the relationship between intragenic methylation and expression is less clear in mammalian cells. We performed genome-wide analyses of DNA methylation and gene expression to determine how the pattern of intragenic methylation correlates with transcription and to assess the relationship between methylation of exonic and intronic portions of the gene body. We found that dense exonic methylation is far more common than previously recognized or expected statistically, yet first exons are relatively spared compared to more downstream exons and introns. Dense methylation surrounding the transcription start site (TSS) is uncoupled from methylation within more downstream regions suggesting that there are at least two classes of intragenic methylation. Whereas methylation surrounding the TSS is tightly linked to transcriptional silencing, methylation of more downstream regions is unassociated with the magnitude of gene expression. Notably, we found that DNA methylation downstream of the TSS, in the region of the first exon, is much more tightly linked to transcriptional silencing than is methylation in the upstream promoter region. These data provide direct evidence that DNA methylation is interpreted dissimilarly in different regions of the gene body and suggest that first exon methylation blocks transcript initiation, or vice versa. Our data also show that once initiated, downstream methylation is not a significant impediment to polymerase extension. Thus, the consequences of most intragenic DNA methylation must extend beyond the modulation of transcription magnitude
Genome evolution in the allotetraploid frog Xenopus laevis
To explore the origins and consequences of tetraploidy in the African clawed frog, we sequenced the Xenopus laevis genome and compared it to the related diploid X. tropicalis genome. We characterize the allotetraploid origin of X. laevis by partitioning its genome into two homoeologous subgenomes, marked by distinct families of ???fossil??? transposable elements. On the basis of the activity of these elements and the age of hundreds of unitary pseudogenes, we estimate that the two diploid progenitor species diverged around 34 million years ago (Ma) and combined to form an allotetraploid around 17-18 Ma. More than 56% of all genes were retained in two homoeologous copies. Protein function, gene expression, and the amount of conserved flanking sequence all correlate with retention rates. The subgenomes have evolved asymmetrically, with one chromosome set more often preserving the ancestral state and the other experiencing more gene loss, deletion, rearrangement, and reduced gene expression.ope
- …