51 research outputs found

    ПОРІВНЯННЯ ХАРАКТЕРИСТИК АСИНХРОННИХ ДВИГУНІВ З КОРОТКОЗАМКНЕНИМ РОТОРОМ ПРИ ЗАМІНІ МАТЕРІАЛУ ОБМОТКИ РОТОРА І ПРОПОЗИЦІЇ ЩОДО ЇХ ПОЛІПШЕННЯ

    Get PDF
    Have been analyzes the questions of the changes the geometry toothed zone asynchronous motor rotor, that must be done when changing the material of the rotor winding. It is noted that the use of the asynchronous generator with wound cast copper rotor winding instead of cast aluminum winding, is not a problem. But for motors with rotor copper windings should conduct additional studies to ensure acceptable starting characteristics and conservation of energy indicators. It was found that the deepening of rotor slot by 15 % will lead to increased influence of crowding out current and will provide for the asynchronous motor with a copper rotor winding same starting characteristics, which have been the engine with aluminum one. The results were obtained under the condition of conservation cross-sectional area of the groove, i.e. copper consumption and cost.В статье проанализированы вопросы изменения геометрии зубцовой зоны ротора асинхронного двигателя, которые необходимо выполнить при изменении материала обмотки ротора, с целью обеспечения достаточных пусковых характеристик и сохранения энергетических показателей.У статті проаналізовані питання зміни геометрії зубцеву зони ротора асинхронного двигуна, які необхідно виконати при зміні матеріалу обмотки ротора, з метою забезпечення достатніх пускових характеристик і збереження енергетичних показників

    Health-related quality of life amongst people diagnosed with abdominal aortic aneurysm and peripheral artery disease and the effect of fenofibrate

    Get PDF
    The aims of this study were, firstly, to assess the effect of concurrent peripheral artery disease (PAD) on the health-related quality of life (QOL) of people diagnosed with a small abdominal aortic aneurysm (AAA); and secondly, to test whether the peroxisome proliferator-activated receptor alpha agonist fenofibrate improved QOL of people diagnosed with a small AAA, including those diagnosed with concurrent PAD. The study included both a cross-sectional observational study and a randomized placebo-controlled clinical trial. 140 people diagnosed with a 35-49 mm diameter AAA, 56 (40%) of whom had concurrent PAD, and 25 healthy controls were prospectively recruited. QOL was assessed with the short form (SF) 36. Findings in participants that were diagnosed with both AAA and PAD were compared separately with those of participants that had a diagnosis of AAA alone or who had neither AAA nor PAD diagnosed (healthy controls). All participants diagnosed with an AAA were then randomly allocated to 145 mg of fenofibrate per day or identical placebo. Outcomes were assessed by changes in the domains of the SF-36 and ankle brachial pressure Index (ABPI) from randomization to 24 weeks. Data were analyzed using Mann-Whitney U tests. Participants diagnosed with both AAA and PAD had significantly worse QOL than participants diagnosed with AAA alone or healthy controls. Fenofibrate did not significantly alter SF-36 scores or ABPI over 24 weeks. Fenofibrate does not improve QOL of people diagnosed with small AAA, irrespective of whether they have concurrent PAD.Trial registration: ACTN12613001039774 Australian New Zealand Clinical Trials Registry

    A road map to IndOOS-2 better observations of the rapidly warming Indian Ocean

    Get PDF
    Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 101(11), (2020): E1891-E1913, https://doi.org/10.1175/BAMS-D-19-0209.1The Indian Ocean Observing System (IndOOS), established in 2006, is a multinational network of sustained oceanic measurements that underpin understanding and forecasting of weather and climate for the Indian Ocean region and beyond. Almost one-third of humanity lives around the Indian Ocean, many in countries dependent on fisheries and rain-fed agriculture that are vulnerable to climate variability and extremes. The Indian Ocean alone has absorbed a quarter of the global oceanic heat uptake over the last two decades and the fate of this heat and its impact on future change is unknown. Climate models project accelerating sea level rise, more frequent extremes in monsoon rainfall, and decreasing oceanic productivity. In view of these new scientific challenges, a 3-yr international review of the IndOOS by more than 60 scientific experts now highlights the need for an enhanced observing network that can better meet societal challenges, and provide more reliable forecasts. Here we present core findings from this review, including the need for 1) chemical, biological, and ecosystem measurements alongside physical parameters; 2) expansion into the western tropics to improve understanding of the monsoon circulation; 3) better-resolved upper ocean processes to improve understanding of air–sea coupling and yield better subseasonal to seasonal predictions; and 4) expansion into key coastal regions and the deep ocean to better constrain the basinwide energy budget. These goals will require new agreements and partnerships with and among Indian Ocean rim countries, creating opportunities for them to enhance their monitoring and forecasting capacity as part of IndOOS-2.We thank the World Climate Research Programme (WCRP) and its core project on Climate and Ocean: Variability, Predictability and Change (CLIVAR), the Indian Ocean Global Ocean Observing System (IOGOOS), the Intergovernmental Oceanographic Commission of UNESCO (IOC-UNESCO), the Integrated Marine Biosphere Research (IMBeR) project, the U.S. National Oceanic and Atmospheric Administration (NOAA), and the International Union of Geodesy and Geophysics (IUGG) for providing the financial support to bring international scientists together to conduct this review. We thank the members of the independent review board that provided detailed feedbacks on the review report that is summarized in this article: P. E. Dexter, M. Krug, J. McCreary, R. Matear, C. Moloney, and S. Wijffels. PMEL Contribution 5041. C. Ummenhofer acknowledges support from The Andrew W. Mellon Foundation Award for Innovative Research.2021-05-0

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    The ATLAS Transition Radiation Tracker (TRT) proportional drift tube: design and performance

    Get PDF
    A straw proportional counter is the basic element of the ATLAS Transition Radiation Tracker (TRT). Its detailed properties as well as the main properties of a few TRT operating gas mixtures are described. Particular attention is paid to straw tube performance in high radiation conditions and to its operational stability

    The ATLAS TRT electronics

    Get PDF
    The ATLAS inner detector consists of three sub-systems: the pixel detector spanning the radius range 4cm-20cm, the semiconductor tracker at radii from 30 to 52 cm, and the transition radiation tracker (TRT), tracking from 56 to 107 cm. The TRT provides a combination of continuous tracking with many projective measurements based on individual drift tubes (or straws) and of electron identification based on transition radiation from fibres or foils interleaved between the straws themselves. This paper describes the on and off detector electronics for the TRT as well as the TRT portion of the data acquisition (DAQ) system

    State of the climate in 2018

    Get PDF
    In 2018, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide—continued their increase. The annual global average carbon dioxide concentration at Earth’s surface was 407.4 ± 0.1 ppm, the highest in the modern instrumental record and in ice core records dating back 800 000 years. Combined, greenhouse gases and several halogenated gases contribute just over 3 W m−2 to radiative forcing and represent a nearly 43% increase since 1990. Carbon dioxide is responsible for about 65% of this radiative forcing. With a weak La Niña in early 2018 transitioning to a weak El Niño by the year’s end, the global surface (land and ocean) temperature was the fourth highest on record, with only 2015 through 2017 being warmer. Several European countries reported record high annual temperatures. There were also more high, and fewer low, temperature extremes than in nearly all of the 68-year extremes record. Madagascar recorded a record daily temperature of 40.5°C in Morondava in March, while South Korea set its record high of 41.0°C in August in Hongcheon. Nawabshah, Pakistan, recorded its highest temperature of 50.2°C, which may be a new daily world record for April. Globally, the annual lower troposphere temperature was third to seventh highest, depending on the dataset analyzed. The lower stratospheric temperature was approximately fifth lowest. The 2018 Arctic land surface temperature was 1.2°C above the 1981–2010 average, tying for third highest in the 118-year record, following 2016 and 2017. June’s Arctic snow cover extent was almost half of what it was 35 years ago. Across Greenland, however, regional summer temperatures were generally below or near average. Additionally, a satellite survey of 47 glaciers in Greenland indicated a net increase in area for the first time since records began in 1999. Increasing permafrost temperatures were reported at most observation sites in the Arctic, with the overall increase of 0.1°–0.2°C between 2017 and 2018 being comparable to the highest rate of warming ever observed in the region. On 17 March, Arctic sea ice extent marked the second smallest annual maximum in the 38-year record, larger than only 2017. The minimum extent in 2018 was reached on 19 September and again on 23 September, tying 2008 and 2010 for the sixth lowest extent on record. The 23 September date tied 1997 as the latest sea ice minimum date on record. First-year ice now dominates the ice cover, comprising 77% of the March 2018 ice pack compared to 55% during the 1980s. Because thinner, younger ice is more vulnerable to melting out in summer, this shift in sea ice age has contributed to the decreasing trend in minimum ice extent. Regionally, Bering Sea ice extent was at record lows for almost the entire 2017/18 ice season. For the Antarctic continent as a whole, 2018 was warmer than average. On the highest points of the Antarctic Plateau, the automatic weather station Relay (74°S) broke or tied six monthly temperature records throughout the year, with August breaking its record by nearly 8°C. However, cool conditions in the western Bellingshausen Sea and Amundsen Sea sector contributed to a low melt season overall for 2017/18. High SSTs contributed to low summer sea ice extent in the Ross and Weddell Seas in 2018, underpinning the second lowest Antarctic summer minimum sea ice extent on record. Despite conducive conditions for its formation, the ozone hole at its maximum extent in September was near the 2000–18 mean, likely due to an ongoing slow decline in stratospheric chlorine monoxide concentration. Across the oceans, globally averaged SST decreased slightly since the record El Niño year of 2016 but was still far above the climatological mean. On average, SST is increasing at a rate of 0.10° ± 0.01°C decade−1 since 1950. The warming appeared largest in the tropical Indian Ocean and smallest in the North Pacific. The deeper ocean continues to warm year after year. For the seventh consecutive year, global annual mean sea level became the highest in the 26-year record, rising to 81 mm above the 1993 average. As anticipated in a warming climate, the hydrological cycle over the ocean is accelerating: dry regions are becoming drier and wet regions rainier. Closer to the equator, 95 named tropical storms were observed during 2018, well above the 1981–2010 average of 82. Eleven tropical cyclones reached Saffir–Simpson scale Category 5 intensity. North Atlantic Major Hurricane Michael’s landfall intensity of 140 kt was the fourth strongest for any continental U.S. hurricane landfall in the 168-year record. Michael caused more than 30 fatalities and 25billion(U.S.dollars)indamages.InthewesternNorthPacific,SuperTyphoonMangkhutledto160fatalitiesand25 billion (U.S. dollars) in damages. In the western North Pacific, Super Typhoon Mangkhut led to 160 fatalities and 6 billion (U.S. dollars) in damages across the Philippines, Hong Kong, Macau, mainland China, Guam, and the Northern Mariana Islands. Tropical Storm Son-Tinh was responsible for 170 fatalities in Vietnam and Laos. Nearly all the islands of Micronesia experienced at least moderate impacts from various tropical cyclones. Across land, many areas around the globe received copious precipitation, notable at different time scales. Rodrigues and Réunion Island near southern Africa each reported their third wettest year on record. In Hawaii, 1262 mm precipitation at Waipā Gardens (Kauai) on 14–15 April set a new U.S. record for 24-h precipitation. In Brazil, the city of Belo Horizonte received nearly 75 mm of rain in just 20 minutes, nearly half its monthly average. Globally, fire activity during 2018 was the lowest since the start of the record in 1997, with a combined burned area of about 500 million hectares. This reinforced the long-term downward trend in fire emissions driven by changes in land use in frequently burning savannas. However, wildfires burned 3.5 million hectares across the United States, well above the 2000–10 average of 2.7 million hectares. Combined, U.S. wildfire damages for the 2017 and 2018 wildfire seasons exceeded $40 billion (U.S. dollars)

    Ocean-atmosphere interactions during cyclone Nargis

    No full text
    International audienceCyclone Nargis (Figure 1a) made landfall in Myanmar (formerly Burma) on 2 May 2008 with sustained winds of approximately 210 kilometers per hour, equivalent to a category 3-4 hurricane. In addition, Nargis brought approximately 600 millimeters of rain and a storm surge of 3-4 meters to the low-lying and densely populated Irrawaddy River delta. In its wake, the storm left an estimated 130,000 dead or missing and more than $10 billion in economic losses. It was the worst natural disaster to strike the Indian Ocean region since the 26 December 2004 tsunami and the worst recorded natural disaster ever to affect Myanmar

    Keys for successful publication in Eur Ann Otorhinolaryngol Head Neck Dis: A STROBE analysis of peer reviews of articles submitted in 2020-2021.

    No full text
    International audienceObjective :To evaluate reviewing and editorial decision for articles submitted to the European Annals of Otorhinolaryngology Head & Neck Diseases.Materials and methods :A retrospective analysis was made of reviewers’ comments on 1,133 scientific articles (700 original articles, 96 literature reviews, and 337 case reports), originating from 69 countries, consecutively submitted on-line between January 1st, 2020 and December 31st, 2021. The main objective was to document the acceptance rate and decision time. Accessory objectives were to synthesize the main comments and to screen for correlations between acceptance and the main characteristics of first authors, articles and reviewers’ comments.Results :In total, 4.1% of submitted articles were accepted. Median decision time differed significantly (P < 0.0001), at 1 month in case of refusal and 4 months in case of acceptance. Reviewers mentioned failure to adhere to the journal's authors’ guide, to use the appropriate EQUATOR guidelines and to adopt the recommended P < 0.005 significance threshold in 94.8%, 54.2%, and 39.9% of cases, respectively. On multivariate analysis, 3 variables significantly impacted acceptance, which increased from 1.3% to 44.6% (P < 0.0001) when an appropriate EQUATOR guideline was used and from 0.3% to 57.4% (P < 0.0001) when the significance threshold was set at P < 0.005, and decreased from 10.5% to 1.1% (P = 0.0001) when the article did not originate from a French-speaking country (member of the Francophonie organization).Conclusion :Adhesion to modern scientific medical writing rules increased acceptance rates for articles in the European Annals of Otorhinolaryngology Head & Neck Diseases. Teaching modern scientific medical writing needs to be enhanced in otorhinolaryngology
    corecore