135 research outputs found

    Every Motion Counts

    Get PDF
    PDF pages:

    Streamlined and Abundant Bacterioplankton Thrive in Functional Cohorts

    Get PDF
    While fastidious microbes can be abundant and ubiquitous in their natural communities, many fail to grow axenically in laboratories due to auxotrophies or other dependencies. To overcome auxotrophies, these microbes rely on their surrounding cohort. A cohort may consist of kin (ecotypes) or more distantly related organisms (community) with the cooperation being reciprocal or nonreciprocal and expensive (Black Queen hypothesis) or costless (by-product). These metabolic partnerships (whether at single species population or community level) enable dominance by and coexistence of these lineages in nature. Here we examine the relevance of these cooperation models to explain the abundance and ubiquity of the dominant fastidious bacterioplankton of a dimictic mesotrophic freshwater lake. Using both culture-dependent (dilution mixed cultures) and culture-independent (small subunit [SSU] rRNA gene time series and environmental metagenomics) methods, we independently identified the primary cohorts of actinobacterial genera "Candidatus Planktophila" (acI-A) and "Candidatus Nanopelagicus" (acI-B) and the proteobacterial genus "Candidatus Fonsibacter" (LD12). While "Ca. Planktophila" and "Ca. Fonsibacter" had no correlation in their natural habitat, they have the potential to be complementary in laboratory settings. We also investigated the bifunctional catalase-peroxidase enzyme KatG (a common good which "Ca. Planktophila" is dependent upon) and its most likely providers in the lake. Further, we found that while ecotype and community cooperation combined may explain "Ca. Planktophila" population abundance, the success of "Ca. Nanopelagicus" and "Ca. Fonsibacter" is better explained as a community by-product. Ecotype differentiation of "Ca. Fonsibacter" as a means of escaping predation was supported but not for overcoming auxotrophies.IMPORTANCE This study examines evolutionary and ecological relationships of three of the most ubiquitous and abundant freshwater bacterial genera: "Ca. Planktophila" (acI-A), "Ca. Nanopelagicus" (acI-B), and "Ca. Fonsibacter" (LD12). Due to high abundance, these genera might have a significant influence on nutrient cycling in freshwaters worldwide, and this study adds a layer of understanding to how seemingly competing clades of bacteria can coexist by having different cooperation strategies. Our synthesis ties together network and ecological theory with empirical evidence and lays out a framework for how the functioning of populations within complex microbial communities can be studied

    Oxygen reduction reaction kinetics on a Pt thin layer electrode in AEMFC

    Get PDF
    The study of the catalytic activity in a fuel cell is challenging, as mass transport, gas crossover and the counter electrode are generally interfering. In this study, a Pt electrode consisting of a thin film deposited on the gas diffusion layer was employed to study the oxygen reduction reaction (ORR) in an operating Anion Exchange Membrane Fuel Cell (AEMFC). The 2D Pt electrode was assembled together with a conventional porous Pt/C counter electrode and an extra Pt/C layer and membrane to reduce the H2 crossover. Polarization curves at different O2 partial pressures were recorded and the resulting reproducible ORR activities were normalized with respect to the active surface area (ECSA), obtained by CO stripping. As expected, decreasing the O2 partial pressure results in a negative shift in open circuit voltage (OCV), cell voltage and maximum attainable current density. For cell voltages above 0.8 V a fairly constant Tafel slope of 60 mV dec−1 was recorded but at lower voltages the slope increases rapidly. The observed Tafel slope can be explained by a theoretical model with an associative mechanism where charge- and proton-transfer steps are decoupled, and the proton transfer is the rate-determining step. A reaction order of 1 with respect to O2 was obtained at 0.65 V which corresponds well with the mechanism suggested above. Based on the obtained catalyst activities, the electrode performance is comparable to good porous electrodes found in the field. The methodology presented in this study is expected to be useful in future kinetic studies of other catalysts for AEMFC

    Comprehensive analysis of chemical and biological problems associated with browning agents used in aquatic studies

    Get PDF
    Inland waters receive and process large amounts of colored organic matter from the terrestrial surroundings. These inputs dramatically affect the chemical, physical, and biological properties of water bodies, as well as their roles as global carbon sinks and sources. However, manipulative studies, especially at ecosystem scale, require large amounts of dissolved organic matter with optical and chemical properties resembling indigenous organic matter. Here, we compared the impacts of two leonardite products (HuminFeed and SuperHume) and a freshly derived reverse osmosis concentrate of organic matter in a set of comprehensive mesocosm- and laboratory-scale experiments and analyses. The chemical properties of the reverse osmosis concentrate and the leonardite products were very different, with leonardite products being low and the reverse osmosis concentrate being high in carboxylic functional groups. Light had a strong impact on the properties of leonardite products, including loss of color and increased particle formation. HuminFeed presented a substantial impact on microbial communities under light conditions, where bacterial production was stimulated and community composition modified, while in dark potential inhibition of bacterial processes was detected. While none of the browning agents inhibited the growth of the tested phytoplankton Gonyostomum semen, HuminFeed had detrimental effects on zooplankton abundance and Daphnia reproduction. We conclude that the effects of browning agents extracted from leonardite, particularly HuminFeed, are in sharp contrast to those originating from terrestrially derived dissolved organic matter. Hence, they should be used with great caution in experimental studies on the consequences of terrestrial carbon for aquatic systems

    Interplay of Dynamic Transcription and Chromatin Remodeling: Lessons from Yeast

    Get PDF
    Regulation of transcription involves dynamic rearrangements of chromatin structure. The budding yeast Saccharomyces cerevisiae has a variety of highly conserved factors necessary for these reconstructions. Chromatin remodelers, histone modifiers and histone chaperones directly associate to promoters and open reading frames of exposed genes and facilitate activation and repression of transcription. We compare two distinct patterns of induced transcription: Sustained transcribed genes switch to an activated state where they remain as long as the induction signal is present. In contrast, single pulsed transcribed genes show a quick and strong induction pulse resulting in high transcript levels followed by adaptation and repression to basal levels. We discuss intensively studied promoters and coding regions from both groups for their co-factor requirements during transcription. Interplay between chromatin restructuring factors and dynamic transcription is highly variable and locus dependent

    PUFA omega-3 and omega-6 biomarkers and sleep : a pooled analysis of cohort studies on behalf of the Fatty Acids and Outcomes Research Consortium (FORCE)

    Get PDF
    Background: n-3 and n-6 PUFAs have physiologic roles in sleep processes. but little is known regarding circulating n-3 and n-6 PUFA and sleep parameters. Objectives: We sought to assess associations between biomarkers of n-3 and n-6 PUFA intake with self-reported sleep duration and difficulty falling sleeping in the Fatty Acids and Outcome Research Consortium. Methods: Harmonized, de novo. individual-level analyses were performed and pooled across 12 cohorts. Participants were 35-96 y old and from 5 nations. Circulating measures included alpha-linolenic acid (ALA), EPA, docosapentaenoic acid (DPA), DHA, EPA + DPA DHA, linoleic acid, and arachidonic acid. Sleep duration (10 cohorts. n = 18.791) was categorized as short (= 9 h). Difficulty falling asleep (8 cohorts, n = 12,500) was categorized as yes or no. Associations between PUFAs, sleep duration, and difficulty falling sleeping were assessed by cross-sectional multinomial logistic regression using standardized protocols and covariates. Cohort-specific multivariable-adjusted ORs per quintile of PUFAs were pooled with inverse-variance weighted meta-analysis. Results: In pooled analysis adjusted for sociodemographic characteristics and health status, participants with higher very long-chain n-3 PUFAs were less likely to have long sleep duration. In the top compared with the bottom quintiles. the multivariable-adjusted ORs (95% CIs) for long sleep were 0.78 (95% CI: 0.65, 0.95) for DHA and 0.76 (95% CI: 0.63, 0.93) for EPA + DPA + DHA. Significant associations for ALA and n-6 PUFA with short sleep duration or difficulty falling sleeping were not identified. Conclusions: Participants with higher concentrations of very long-chain n-3 PUFAs were less likely to have long sleep duration. While objective biomarkers reduce recall bias and misclassification, the cross-sectional design limits assessment of the temporal nature of this relation. These novel findings across 12 cohorts highlight the need for experimental and biological assessments of very long-chain n-3 PUFAs and sleep duration.Peer reviewe

    Cancer worry among Norwegian male BRCA1/2 mutation carriers

    Get PDF
    This qualitative study explored the experiences of Norwegian men after being identified as BRCA 1/2 mutation-positive. Only limited knowledge is available on this topic; therefore, the aim of this study was to gain a deeper insight from the men’s own perspectives. Data were collected from in-depth interviews with 15 men and seven of their partners. The participants described fear of cancer development, and two main narrative patterns were identified: fear for their own health, including fear of developing cancer, and negative feelings about responsibility for others’ health. The men expressed fear of developing cancer themselves and described a need for genetic risk information. They were also deeply concerned about how the mutation might affect their children and other relatives. There is a need for guidelines concerning genetic risk information and follow-up programs for male BRCA 1/2 mutation carriers. This study adds valuable contextual insights into their experiences of living with fear of cancer

    A retrospective observational study of the relationship between single nucleotide polymorphisms associated with the risk of developing Colorectal cancer and survival

    Get PDF
    Background: There is variability in clinical outcome for patients with apparently the same stage colorectal cancer (CRC). Single nucleotide polymorphisms (SNPs) mapping to chromosomes 1q41, 3q26.2, 6p21, 8q23.3, 8q24.21, 10p14, 11q13, 11q23.1, 12q13.13, 14q22, 14q22.2, 15q13.3, 16q22.1, 18q21.1, 19q13.11, 20p12, 20p12.3, 20q13.33 and Xp22 have robustly been shown to be associated with the risk of developing CRC. Since germline variation can also influence patient outcome the relationship between these SNPs and patient survivorship from CRC was examined. Methods: All enrolled into the National Study of Colorectal Cancer Genetics (NSCCG) were genotyped for 1q41, 3q26.2, 6p21, 8q23.3, 8q24.21, 10p14, 11q13, 11q23.1, 12q13.13, 14q22, 14q22.2, 15q13.3, 16q22.1, 18q21.1, 19q13.11, 20p12, 20p12.3, 20q13.33 and xp22 SNPs. Linking this information to the National Cancer Data Repository allowed patient genotype to be related to survival. Results: The linked dataset consisted of 4,327 individuals. 14q22.22 genotype defined by the SNP rs4444235 showed a significant association with overall survival. Specifically, the C allele was associated with poorer observed survival (per allele hazard ratio 1.13, 95% confidence interval 1.05-1.22, P = 0.0015). Conclusion: The CRC susceptibility SNP rs4444235 also appears to exert an influence in modulating patient survival and warrants further evaluation as a potential prognostic marker

    Gene Expression Patterns of Dengue Virus-Infected Children from Nicaragua Reveal a Distinct Signature of Increased Metabolism

    Get PDF
    Dengue is a widespread viral disease for which over 3 billion people are at risk. There are no drug treatments or vaccines available for this disease. It is also difficult for physicians to predict which patients are at highest risk for the severe manifestations known as dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). We used genome-wide transcriptional profiling analysis to study peripheral blood responses to dengue among patients from Nicaragua. We found that patients with severe manifestations involving shock had very different transcriptional profiles from dengue patients with mild and moderate illness. We then compared our results with other microarray experiments on dengue patients available from public databases and confirmed that dengue is often associated with large changes to the metabolic processes within cells. This approach could identify prognostic markers for severe dengue as well as provide a better understanding of the pathophysiology associated with different grades of disease severity

    Truncating SRCAP variants outside the Floating-Harbor syndrome locus cause a distinct neurodevelopmental disorder with a specific DNA methylation signature

    Get PDF
    Truncating variants in exons 33 and 34 of the SNF2-related CREBBP activator protein (SRCAP) gene cause the neurodevelopmental disorder (NDD) Floating-Harbor syndrome (FLHS), characterized by short stature, speech delay, and facial dysmorphism. Here, we present a cohort of 33 individuals with clinical features distinct from FLHS and truncating (mostly de novo) SRCAP variants either proximal (n = 28) or distal (n = 5) to the FLHS locus. Detailed clinical characterization of the proximal SRCAP individuals identified shared characteristics: developmental delay with or without intellectual disability, behavioral and psychiatric problems, non-specific facial features, musculoskeletal issues, and hypotonia. Because FLHS is known to be associated with a unique set of DNA methylation (DNAm) changes in blood, a DNAm signature, we investigated whether there was a distinct signature associated with our affected individuals. A machine-learning model, based on the FLHS DNAm signature, negatively classified all our tested subjects. Comparing proximal variants with typically developing controls, we identified a DNAm signature distinct from the FLHS signature. Based on the DNAm and clinical data, we refer to the condition as "non-FLHS SRCAP-related NDD.'' All five distal variants classified negatively using the FLHS DNAm model while two classified positively using the proximal model. This suggests divergent pathogenicity of these variants, though clinically the distal group presented with NDD, similar to the proximal SRCAP group. In summary, for SRCAP, there is a clear relationship between variant location, DNAm profile, and clinical phenotype. These results highlight the power of combined epigenetic, molecular, and clinical studies to identify and characterize genotype-epigenotype-phenotype correlations
    corecore