47 research outputs found

    Quantitative genetics of breeding coloration in sand lizards; genic capture unlikely to maintain additive genetic variance

    Get PDF
    Sexual selection on fitness-determining traits should theoretically erode genetic variance and lead to low heritability. However, many sexually selected traits maintain significant phenotypic and additive genetic variance, with explanations for this “lek paradox” including genic capture due to condition-dependence, and breaks on directional selection due to environmental sources of variance including maternal effects. Here we investigate genetic and environmental sources of variance in the intrasexually selected green badge of the sand lizard (Lacerta agilis). The badge functions as a cue to male fighting ability in this species, and male–male interactions determine mate acquisition. Using animal models on a pedigree including three generations of males measured over an extensive 9-year field study, we partition phenotypic variance in both badge size and body condition into additive genetic, maternal, and permanent environmental effects experienced by an individual over its lifespan. Heritability of badge size was 0.33 with a significant estimate of underlying additive genetic variance. Body condition was strongly environmentally determined in this species and did not show either significant additive genetic variance or heritability. Neither badge size nor body condition was responsive to maternal effects. We propose that the lack of additive genetic variance and heritability of body condition makes it unlikely that genic capture mechanisms maintain additive genetic variance for badge size. That said, genic capture was originally proposed for male traits under female choice, not agonistic selection. If developmental pathways generating variance in body condition, and/or the covarying secondary sex trait, differ between inter- and intrasexual selection, or the rate at which their additive genetic variance or covariance is depleted, future work may show whether genic capture is largely restricted to intersexual selection processes.publishedVersio

    Discriminación por razón de género y negociación colectiva tras la ley 3/2012

    Get PDF
    Este artículo describe y analiza la configuración jurídica del convenio colectivo como fuente reguladora y ga-rantista del derecho de igualdad y no dis-criminación por razón de género, tanto con carácter general como en el ámbito específico del acceso al empleo, formación y promoción en el trabajo y en las más relevantes condiciones en las relaciones laborales. A tal fin, y a partir de la doctrina establecida por la jurisprudencia constitucional, se estudian las causas de la desigualdad y las categorías que permiten una fundamentación razonable y objetiva para lograr la igualdad material. También se aportan datos cuantitativos acerca de la influencia de la Ley Orgánica 3/2007 en el régimen de los convenios convenios colectivos en esta materia.This paper work de-scribes and analyses the collective agree-ments legal configuration as regulating and guarantor source of the equality's right and no discrimination because of the sex, as much in general terms as in the specific field of accessing to a job, training and advance-ment in the job and in the main conditions in the labour relationships. According the established doctrine by the constitutional sentences, we study the inequality causes and the categories which give a reasonable and factual basis to reach a material equality. In addition, this work also provides quanti-tative facts about the influence of Organic Law 3/2007 in the collective agreements regime in this matte

    Endless forms of sexual selection

    Get PDF
    In recent years, the field of sexual selection has exploded, with advances in theoretical and empirical research complementing each other in exciting ways. This perspective piece is the product of a "stock-taking\u27\u27 workshop on sexual selection and sexual conflict. Our aim is to identify and deliberate on outstanding questions and to stimulate discussion rather than provide a comprehensive overview of the entire field. These questions are organized into four thematic sections we deem essential to the field. First we focus on the evolution of mate choice and mating systems. Variation in mate quality can generate both competition and choice in the opposite sex, with implications for the evolution of mating systems. Limitations on mate choice may dictate the importance of direct vs. indirect benefits in mating decisions and consequently, mating systems, especially with regard to polyandry. Second, we focus on how sender and receiver mechanisms shape signal design. Mediation of honest signal content likely depends on integration of temporally variable social and physiological costs that are challenging to measure. We view the neuroethology of sensory and cognitive receiver biases as the main key to signal form and the \u27aesthetic sense\u27 proposed by Darwin. Since a receiver bias is sufficient to both initiate and drive ornament or armament exaggeration, without a genetically correlated or even coevolving receiver, this may be the appropriate \u27null model\u27 of sexual selection. Thirdly, we focus on the genetic architecture of sexually selected traits. Despite advances in modern molecular techniques, the number and identity of genes underlying performance, display and secondary sexual traits remains largely unknown. In-depth investigations into the genetic basis of sexual dimorphism in the context of long-term field studies will reveal constraints and trajectories of sexually selected trait evolution. Finally, we focus on sexual selection and conflict as drivers of speciation. Population divergence and speciation are often influenced by an interplay between sexual and natural selection. The extent to which sexual selection promotes or counteracts population divergence may vary depending on the genetic architecture of traits as well as the covariance between mating competition and local adaptation. Additionally, post-copulatory processes, such as selection against heterospecific sperm, may influence the importance of sexual selection in speciation. We propose that efforts to resolve these four themes can catalyze conceptual progress in the field of sexual selection, and we offer potential avenues of research to advance this progress

    HORMONAL REGULATION OF MALE REPRODUCTIVE PHENOTYPE IN A COOPERATIVELY BREEDING TROPICAL BIRD By

    No full text
    First and foremost, I want to thank my family; my father and mother John and Barbara Lindsay, my brother Ian Lindsay, and my husband Jesse Haag. Thank you for being the best friends and confidants a daughter, sister, and wife could ask for. Your love and support have given me the confidence to pursue and capture my dreams. My sincere gratitude goes to my advisors Hubert Schwabl and Mike Webster who encouraged and challenged me throughout my doctoral program and without whom none of this would have been possible. To my fellow Schwabl and Webster lab mates – you guys are an inspiration and sharing this graduate experience with you has been an honor. I look forward to many future years of friendship and collaboration. I would like to thank my other fellow SBS graduate students for their advice, support, and for the laughs we‘ve shared. SBS staff – you guys make this whole place work and without you, my graduate bubble would have come crashing down around my ears. In particular, I want to thank Pam Black and Patty Brandt for dealing with me and my mountains of receipts while I was battling wrens down-under. I want to thank Pat Carter, who served on my graduate committee and whose statistical advice greatly enhanced the quality of my dissertation. Thank you to Donna Holmes for your wisdom and insight; the lessons I have learned from you abou

    Extreme plasticity in reproductive biology of an oviparous lizard

    Get PDF
    Most oviparous squamate reptiles lay their eggs when embryos have completed less than one‐third of development, with the remaining two‐thirds spent in an external nest. Even when females facultatively retain eggs in dry or cold conditions, such retention generally causes only a minor (\u3c10%) decrease in subsequent incubation periods. In contrast, we found that female sand lizards (Lacerta agilis) from an experimentally founded field population (established ca. 20 years ago on the southwest coast of Sweden) exhibited wide variation in incubation periods even when the eggs were kept at standard (25°C) conditions. Females that retained eggs in utero for longer based on the delay between capture and oviposition produced eggs that hatched sooner. In the extreme case, eggs hatched after only 55% of the normal incubation period. Although the proximate mechanisms underlying this flexibility remain unclear, our results from this first full field season at the new study site show that females within a single cold‐climate population of lizards can span a substantial proportion of the continuum from normal oviparity to viviparity

    Sexually selected male plumage color is testosterone dependent in a tropical passerine bird, the red-backed fairy-wren (Malurus melanocephalus)

    Get PDF
    Sexual signals, such as bright plumage coloration in passerine birds, reflect individual quality, and testosterone (T) may play a critical role in maintaining signal honesty. Manipulations of T during molt have yielded mixed effects on passerine plumage color, in most cases delaying molt or leading to production of drab plumage. However, the majority of these studies have been conducted on species that undergo a post-nuptial molt when T is low; the role of T in species that acquire breeding plumage during a pre-nuptial molt remains largely unexplored. We experimentally tested the effects of increased T on plumage color in second-year male red-backed fairy-wrens (Malurus melanocephalus), a species in which after-second-year males undergo a pre-nuptial molt into red/black (carotenoid and melanin-based) plumage and second-year males either assume red/black or brown breeding plumage. T treatment stimulated a rapid and early onset pre-nuptial molt and resulted in red/black plumage acquisition, bill darkening, and growth of the sperm storage organ, but had no effect on body condition or corticosterone concentrations. Control males molted later and assumed brown plumage. T treated males produced feathers with similar but not identical reflectance parameters to those of unmanipulated after-second-year red/black males; while reflectance spectra of red back and black crown feathers were similar, black breast feathers differed in UV chroma, hue and brightness, indicating a potentially age and plumage patch-dependent response to T for melanin- vs. carotenoid-pigmentation. We show that testosterone is the primary mechanism functioning during the pre-nuptial molt to regulate intrasexually variable plumage color and breeding phenotype in male red-backed fairy-wrens. Our results suggest that the effects of T on plumage coloration may vary with timing of molt (pre- vs. post-nuptial), and that the role of T in mediating plumage signal production may differ across age classes, plumage patches, and between pigment-types

    Data from: Corticosterone: a costly mediator of signal honesty in sand lizards

    No full text
    The mechanisms underlying honest signal expression remain elusive and may involve the integration of social and physiological costs. Corticosterone is a socially modulated metabolic hormone that mediates energy investment and behavior and may therefore function to deter dishonest signal expression. We examined the relationship between corticosterone and green badge coloration in male sand lizards (Lacerta agilis), hypothesizing that physiological and behavioral costs resulting from elevated baseline glucocorticoids function in maintenance of honest signal expression. We found that large-badged males had higher corticosterone titer, with this relationship apparent at the end of the season and absent early in the season. Large-badged males also suffered higher ectoparasite load (number of tick nymphs), despite being in better condition than small-badged males. Ectoparasite load was positively related to corticosterone titer early in the season at the time of badge formation. High-condition individuals had lower corticosterone and lower numbers of ectoparasites than low-condition individuals, suggestive of conditional variation in ability to withstand costs of corticosterone. We found an opposing negative relationship between corticosterone titer and endoparasite load. Corticosterone titer was also negatively associated with male mobility, a fitness-determining behavior in this species. Because badge size is involved in mediating agonistic social interactions in this species, our results suggest that badge-dependent variation in corticosterone is likely reflective of variation in social conditions experienced over the course of the season. Our results implicate corticosterone in maintenance of signal honesty, both early in the season through enforcement of physiological costs (ectoparasite load) and during the season through behavioral costs (male mobility). We propose that socially modulated variation in corticosterone critically functions in mediation of signal honesty without requiring a direct role for corticosterone in trait expression

    Endocrine Correlates of Mate Choice and Promiscuity in Females of a Socially Monogamous Avian Mating System with Alternative Male Reproductive Phenotypes

    No full text
    While our understanding of male reproductive strategies is informed by extensive investigations into endocrine mechanisms, the proximate mechanisms by which females compete for mates and adjust reproduction to social environment remains enigmatic. We set out to uncover endocrine correlates of mate choice, social environment, and reproductive investment in female red-backed fairy-wrens Malurus melanocephalus. In this socially monogamous, yet highly sexually promiscuous species, females experience discrete variation in the phenotype of their mates, which vary in both plumage signals and level of paternal care, and in the composition of their breeding groups, which consist of either the pair alone or with an additional cooperative auxiliary; female investment varies according to these social parameters. We found that androgen, estrogen, and glucorticoid levels varied with reproductive stage, with highest androgen and estrogen concentrations during nest construction and highest corticosterone concentrations during the pre-breeding stage. These stage-dependent patterns did not vary with male phenotype or auxiliary presence, though androgen levels during pre-breeding mate selection were lower in females obtaining red/black mates than those obtaining brown mates. We found no evidence that androgen, estrogen, or corticosterone levels during the fertile period were related to extra-pair young (EPY) frequency. This study demonstrates clear changes in steroid levels with reproductive stage, though it found little support for variation with social environment. We suggest hormonal responsiveness to social factors may be physiologically constrained in ways that are bypassed through exogenous hormone manipulations
    corecore