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ABSTRACT
In recent years, the field of sexual selection has exploded, with advances in theoretical
and empirical research complementing each other in exciting ways. This perspective
piece is the product of a ‘‘stock-taking’’ workshop on sexual selection and sexual
conflict. Our aim is to identify and deliberate on outstanding questions and to stimulate
discussion rather than provide a comprehensive overview of the entire field. These
questions are organized into four thematic sections we deem essential to the field. First
we focus on the evolution of mate choice andmating systems. Variation in mate quality
can generate both competition and choice in the opposite sex, with implications for the
evolution of mating systems. Limitations on mate choice may dictate the importance
of direct vs. indirect benefits in mating decisions and consequently, mating systems,
especially with regard to polyandry. Second, we focus on how sender and receiver
mechanisms shape signal design. Mediation of honest signal content likely depends
on integration of temporally variable social and physiological costs that are challenging
to measure. We view the neuroethology of sensory and cognitive receiver biases as the
main key to signal form and the ‘aesthetic sense’ proposed by Darwin. Since a receiver
bias is sufficient to both initiate and drive ornament or armament exaggeration, without
a genetically correlated or even coevolving receiver, this may be the appropriate ‘null
model’ of sexual selection. Thirdly, we focus on the genetic architecture of sexually
selected traits. Despite advances in modern molecular techniques, the number and
identity of genes underlying performance, display and secondary sexual traits remains
largely unknown. In-depth investigations into the genetic basis of sexual dimorphism in
the context of long-term field studies will reveal constraints and trajectories of sexually
selected trait evolution. Finally, we focus on sexual selection and conflict as drivers of
speciation. Population divergence and speciation are often influenced by an interplay
between sexual and natural selection. The extent to which sexual selection promotes
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or counteracts population divergence may vary depending on the genetic architecture
of traits as well as the covariance between mating competition and local adaptation.
Additionally, post-copulatory processes, such as selection against heterospecific sperm,
may influence the importance of sexual selection in speciation. We propose that efforts
to resolve these four themes can catalyze conceptual progress in the field of sexual
selection, and we offer potential avenues of research to advance this progress.

Subjects Animal Behavior, Ecology, Evolutionary Studies, Genetics, Zoology
Keywords Sexual selection, Sexual conflict, Mate choice, Polyandry, Speciation, Sensory bias,
Signal honesty, Sperm competition, Cryptic female choice, Epigenetics

INTRODUCTION
A great deal of the biodiversity on this planet, especially the spectacular traits at which
humans marvel, are direct or indirect results of sexual selection. Darwin (1871) defined
sexual selection as ‘‘the advantage which certain individuals have over other individuals of
the same sex and species solely in respect of reproduction’’ (reproduction, in this context,
meaning mating success). The flowers of an alpine meadow, antelope horns, a dawn
chorus of songbirds: all are snapshots of long histories of sexually selected diversification
and exaggeration of signals and displays that have or once had effects on mating or
fertilization success. For sexually reproducing organisms, intrasexual competition for
reproductive opportunities is a powerful selective pressure, not only shaping the extravagant
‘secondary sexual characters’ that Darwin originally set out to explain, but also with obvious
potential to reinforce or even trigger speciation and dramatically affect macroevolution
and biogeography. To explore biodiversity without an understanding of sexual selection is
a bit like laying a jigsaw puzzle upside down. With our current insight that reproduction
is the hard currency of natural selection, it may seem strange that the notion of sexual
selection required such a massive volume of reasoning and countless examples (Darwin,
1871), and that despite this effort, it remained controversial for so long. Darwin identified
two components of sexual selection: contest competition between rivals of the same sex
(typically males) and mate choice (typically by females). Female choice in particular
attracted criticism, first fromWallace (1895) and later by others (although, ironically, with
arguments similar to the often useful ‘good genes’models of today; (Cronin, 1991;Hoquet &
Levandowsky, 2015; Prum, 2012). Even when Fisher (1930) outlined the intuitively plausible
runaway process involving a preferred male trait and a preference gene acting in females in
his classicmonograph, it was rather skeptically reviewed byHuxley (1938a),Huxley (1938b).
However, with the exception of Bateman (1948), the subject was largely ignored until the
explosion of evolutionary and behavioural ecology in the 1970s, further sparked by the first
demonstration of female choice in the wild (Andersson, 1982). Conceptions of ornamental
traits as quality advertisements (Williams, 1966; Zahavi, 1975) and how variation in such
viability messages can be maintained (notablyHamilton & Zuk, 1982), together with edited
volumes like Bateson (1983) and Bradbury & Andersson (1987), generated questions and
research programs for decades to come.
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The theoretical genetic modelling of Fisher’s trait-preference coevolution was pioneered
by O’Donald (1962), Fisher’s last Ph.D. student, but runaway dynamics were not fully
explored and demonstrated until the landmark models of Lande (1981) and Kirkpatrick
(1982). These were advocated as the ‘Lande-Kirkpatrick null model’ of sexual selection by
mate choice by Prum (2010), partly as a reaction to decades of focus on indicator models
and direct or indirect benefits of mate choice (reviewed by Kempenaers, 2007; Kokko et
al., 2003; Mead & Arnold, 2004). This and the neglect of the social competition that is the
essence of sexual selection (Darwin, 1871; West-Eberhard, 1979), have been called ‘sexual
selection amnesia’ byWest-Eberhard (2014).

Darwin emphasized adaptations arising from what is now termed pre-copulatory sexual
selection, i.e., competition for matings. Since 1970 it has become accepted that sexual
selection can continue after mating (post-copulatory sexual selection; (see Birkhead,
2010), and much work has been completed on its two components analogous to Darwin’s
male-male competition (i.e., sperm competition Parker, 1970; Parker & Pizzari, 2010) and
female choice (i.e., sperm selection or cryptic female choice; Eberhard, 1996; Firman et al.,
2017; Thornhill, 1983). Further, it is increasingly appreciated that the process of sexual
selection is associated with, and frequently exacerbates, sexual conflict (Table 1), i.e., cases
where male and female fitness interests cannot be simultaneously satisfied (Parker, 1979;
Trivers, 1972). Thus, after a long period of quiescence since its inception in 1871, the past
40 years have seen an upsurge of interest in sexual selection with the rise of new theory,
modern computer technology, molecular biology and techniques in comparative analysis
having fueled extensive developments.

SURVEY METHODOLOGY
The enthusiastic resurgence of sexual selection theory in the 1970s and ‘80s stimulated a
Dahlem Conference which sought to identify emerging directions (Bradbury & Andersson,
1987) and the intensity of interest in the field has continued unabated. The recent
workshop on sexual selection and sexual conflict held at Chalmers University/University
of Gothenburg (‘‘Origins of Biodiversity Workshop: Sexual selection and Sexual Conflict’’,
April 2017) aimed a renewed ‘stock-taking’ on diverse aspects of the subject. Our goal is
not to review the entire field, or even subfields, of sexual selection and sexual conflict (e.g.,
Andersson, 1994; Arnqvist & Rowe, 2005; Birkhead & Møller, 1998; Cummings & Endler,
2018; Eberhard, 1996; Hare & Simmons, 2018; Jones & Ratterman, 2009; Kuijper, Pen &
Weissing, 2012; Rosenthal, 2017), but rather to pose a series of open questions emerging
from the workshop, naturally colored by our various interests, expertise and empirical
systems. The questions we pose delimit broad themes within sexual selection and conflict,
answers to which we consider of critical importance to the advancement of the field as
a whole. The subsections were either written independently or co-written before being
compiled into four research themes within sexual selection (as per Andersson, 1994): (1)
the evolution of mate choice and mating systems, (2) sender and receiver mechanisms
shaping signal design and evolution, (3) the genetic architecture of sexual selection, and
(4) sexual selection and sexual conflict as drivers, or obstacles, of speciation. We hope that
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Table 1 Glossary.

Anisogamy The within-species occurrence of gametes of two different sizes, which results in two sexes, males and fe-
males. Females produce the larger and males the smaller gametes.

Bateman Gradient The slope of the linear regression of the number of offspring produced by an individual (reproductive suc-
cess, or ‘fertility’) on the number of its reproductive partners (mating success). This represents the multi-
plicative component of the gradient of precopulatory sexual selection acting on a trait. It is named after the
seminal study of Bateman (1948), which used fruit flies, D. melanogaster, to suggest that the relationship be-
tween fertility and mating success is stronger in males, and argued that in an anisogamous population males
can have higher potential reproductive rates than females, resulting in more intense intrasexual competition
over mating opportunities in males.

Benefits of mate choice ‘Direct’ benefits of mate choice are ‘non-genetic’ and include resources that will benefit the choosing parent
or its offspring, for example access to food, a safe territory, or parental care. ‘Indirect’ benefits are ‘genetic’
in the sense that by choosing a mate, a parent will secure ‘good’ (viability-related) genes or ‘sexy’ genes
(genes for traits that are attractive to the opposite sex) for its offspring, or genes that are compatible to the
parent’s own genotype.

Generalization Responsiveness (preference or aversion) to novel stimuli, generated by discrimination learning, and along
the dimension(s) of the training stimuli. The resulting generalization gradients (e.g., a preference function)
can be either a Peak shift (peak response to stimuli stronger than the positive training stimulus), or an Area
shift (peak not shifted, but function asymmetric and biased towards the reinforced direction). Finally, if the
gradient does not show a decrease within the interval considered, the preference or aversion can be called
Open-ended (see e.g., Ghirlanda & Enquist, 2003; Ten Cate & Rowe, 2007 and Fig. 3).

Genic capture Female preferences for costly male traits results in the evolution of a genetic covariance between male condi-
tion, dictated by many genes, and a target male trait expression

Lek paradox The problem, commonly relating to female choice of males on leks, of how genetic variation for mate choice
can persist despite directional selection for the problem, commonly relating to female choice of males on
leks, of how genetic variation for mate choice can persist despite directional selection on traits relevant to
choice. Under directional selection, the favoured genes should fixate, so that all individuals of the selected
sex should have the gene(s) making them attractive, thus removing the basis for the choice.

Linkage disequilibrium (LD) LD is the non-random association of alleles at different loci. The term often causes confusion and LD may
exist without physical linkage or allele frequencies in equilibrium. The speciation-with-gene-flow process is
characterized by the build up of LD and genome-wide LD is the footprint of speciation. LD in specific ge-
nomic regions reflects the history of selection, gene conversion and other forces that cause gene-frequency
evolution.

Mating preference A bias during mate choice which results in a skew towards mating with individuals that express specific phe-
notypic traits.

Mating system Monandry –females mating with one male.Monogamy –both sexes mating with one mate.Monogyny
–males mating with one female. Polyandry –females mating with multiple males. Polygamy (or polygy-
nandry) –both sexes mating with multiple mates. Polygyny –males mating with multiple females.

Pleiotropy One gene affects two or more traits (genetic pleiotropy), or one hormone affects two or more traits
(hormonal pleiotropy).

Receiver bias Used here and by some other authors (Ten Cate & Rowe, 2007) to include all biased responses (preferences
or aversions), whether generated by peripheral sensory systems (sensory bias), neural processing
(perceptual bias) or learning or imprinting (cognitive bias). Ryan & Cummings (2013) suggest that Sensory
and Cognitive bias should be included in Perceptual bias. See Fig. 3

Receiver psychology A phrase coined by Guilford & Dawkins (1991) ‘‘to encompass the cognitive mechanisms in signal receivers
that process incoming information and could potentially influence signal evolution’’ (Rowe, 2013).

Recombination The production of offspring with different combination of alleles at different loci than their parents. Recom-
bination often refers to the exchange of genetic material between homologous chromosomes during meiosis
(chromosomal crossover).

(continued on next page)

Lindsay et al. (2019), PeerJ, DOI 10.7717/peerj.7988 4/54

https://peerj.com
http://dx.doi.org/10.7717/peerj.7988


Table 1 (continued)

Red Queen A theory proposing that organisms must constantly evolve in response to their ever-changing environment.
The ‘‘Red Queen’’ analogy is derived from Lewis Carroll’s fantasy novel ‘‘Through the Looking-Glass’’
(1871) where the Red Queen tells Alice that ‘‘it takes all the running you can do, to keep in the same place’’.
The Red Queen theory has been applied to many forms of coevolution among species, for example the
antagonistic interactions between parasites and their hosts, and the benefit of sex. In sexual selection theory,
Hamilton & Zuk (1982) proposed that sexual ornaments signal the bearer’s resistance to parasites, which
is a ‘‘Red Queen’’ model assuming a female preference for good genes. The ‘‘Red Queen’’ logic can also be
applied to explain female preferences for rare or dissimilar alleles at immune genes that give a broader allelic
repertoire and better pathogen resistance in the offspring, as argued here (the ‘‘Promiscuous Red Queen’’
hypothesis, see Fig. 2.)

Segregation Pairs of alleles segregate (separate) into different gametes during meiosis. This is referred to as Mendel’s law
of segregation.

Sensory drive A model proposed by Endler (1992) which encompasses evolutionary interactions between the (abiotic and
biotic) environment, sensory system and courtship signals, taking into account pre-existing bias and sensory
exploitation. Sensory and signalling systems coevolve under the constraints of the environment which hence
influence the evolutionary trajectory in a predictable direction (Cummings & Endler, 2018; Endler, 1992).

Sexual cascade The set of sequential evolutionary transitions in sexual strategy of eukaryote organisms, each transition
under appropriate conditions giving rise to the selective forces that generate the next. Some taxa remain
‘frozen’ at a given stage without further change. The cascade begins with isogamous syngamy in unicells.
Development towards multicellularity favours anisogamy and generates a unity sex ratio. In early, seden-
tary marine organisms with broadcast spawning, sexual selection is restricted to sperm competition and
sperm selection. Development of mobility permits diversion of expenditure on sperm into ‘female-targeting’
(moving to and release of sperm adjacent to spawning females), which may ultimately facilitate internal fer-
tilization and the many forms of pre-copulatory sexual selection documented by Darwin (1871).

Sexual conflict A situation in which the fitness of a male and a female cannot be both maximized separately and simultane-
ously, by the same trait or reproductive decision. This can arise as social conflict between prospective sex-
ual partners, when a reproductive decision (e.g., whether to mate with each other or not) is adaptive for one
individual but detrimental to the other. This conflict is often mediated by sex-limited traits and can give
rise to sexually antagonistic patterns of intersexual coevolution in which the antagonistic effect of alleles
at some loci is counteracted by the effect of alleles at other loci (inter-locus). Another form of ‘conflict’ can
arise when there is a divergence in the male and female phenotypic optima, and gene expression is not sex
limited. In this case a locus can segregate for different alleles which may have sexually antagonistic effects
when expressed in males and females, i.e., an allele that is beneficial when expressed in females may be detri-
mental when expressed in males and vice versa (intra-locus).

Sexual selection Selection that depends on the advantage which certain individuals have over other individuals of the same
sex and species, in exclusive relation to mating and fertilization (Andersson, 1994; Darwin, 1871).

these lines of questioning will encourage discussion and offer non-specialists an insight
into this ever-expanding area of evolutionary biology.

1. Evolution of mate choice and mating systems
Anisogamy, the size difference between male and female gametes that results from the
formation of two sexes, is generally accepted as a primary force behind broad patterns of
male-male competition over mating opportunities and female-driven mate choice (e.g.,
Janicke et al., 2016; Schärer, Rowe & Arnqvist, 2012). Over the last decade, there has been a
revived focus on anisogamy (Table 1) and its evolutionary consequences (e.g., Janicke et
al., 2016; Lehtonen & Kokko, 2011; Lehtonen, Parker & Schärer, 2016; Parker, 2014; Schärer,
Rowe & Arnqvist, 2012). The ‘sexual cascade’ (Table 1), a successive sequence of events
that has occurred during the long-term evolution of sexual strategy (Parker, 2014; Parker
& Pizzari, 2015), provides a null expectation for competitiveness and choosiness in many
taxa. Socio-ecological conditions can, however, arise that favor deviations from ancestral
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behavioural adaptations. Thus, despite the evolutionary irreversibility of anisogamy (Parker,
1983), patterns such as male-mate choice and female–female competition over mates do
arise and overwrite the ancestral influence of anisogamy. Much of this is well captured by
operational sex ratio theory (Emlen & Oring, 1977;Clutton-Brock & Parker, 1992; reviewed
in Kvarnemo & Simmons, 2013), explaining often seen variation in competitiveness
and choosiness, also on short time scales (e.g., Forsgren et al., 2004). Indeed, sex-specific
investment in competition, mate choice, parental care, and sexual dimorphism vary
dramatically across the animal kingdom (Ahnesjö & Bussière, 2016; Janicke et al., 2016),
and this variation deserves our attention and interest.

This shift in research interest is reflected by a number of reviews within the last
decade demonstrating the prevalence of female competition and male choice (Edward
& Chapman, 2011; Hare & Simmons, 2018; Rosvall, 2011; Schlupp, 2018; Stockley & Bro-
Jørgensen, 2011). Importantly, these behaviors are not restricted to species where there
is an a priori expectation of sex-role ‘reversal’, because male-mate choice can co-occur
with female mate choice, and similarly, both sexes can show intra-sexual competition
for mating opportunities. When both sexes vary in their quality as mates, selection can
generate mating competition and selective mate choice in either sex (Owens, Burke &
Thompson, 1994; Owens & Thompson, 1994; Parker, 1983). It is therefore critical to our
understanding of sexual selection that we do not let preconceived ideas about sex roles
limit our predictions and study designs.

Below we examine a few general topics related to mate choice and mating systems
(Table 1). How and why organisms choose their partners may hinge on direct contributions
to the quality of a reproductive bout or indirect genetic benefits. We discuss how details of
pre- and post-copulatory processes can affect sexual selection, and how genetic benefits that
derive from mating with a particular individual might be important in the context of both
pathogens and inbreeding. Finally, we point out benefits of studying broadcast spawning,
as this form of reproduction excludes pre-copulatory sexual selection. Future research into
the relative contributions of direct vs. indirect benefits should take into account mating
systems, temporal limitations placed on mate choice, and other selection pressures.

1a. Direct and indirect benefits of mate choice—implications for mating
systems and sexual selection
Mate choice can be time consuming, risky and might even result in individuals that are too
choosy not succeeding in finding a mate. We therefore expect individuals to gain important
benefits from mate choice to cover these costs. Mate choice can evolve through the pursuit
of both direct and indirect benefits (‘benefits of mate choice’, Table 1) and can take the
form of either pre- or post-copulatory selection (Edward & Chapman, 2011; Jennions &
Petrie, 2000). Whereas mate choice for direct benefits primarily occurs before mating,
mate choice driven by indirect benefits can continue after mating, and may be particularly
important if the genetic quality of potential mates cannot be determined prior to mating.
Post-copulatory mate choice therefore requires mating with multiple mates.

In some taxa, such as migrating passerine birds, pair formation and therefore pre-mating
mate choice occurs under severe time stress (e.g.,Alatalo, Carlson & Lundberg, 1988; Bensch
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& Hasselquist, 1992; Dale & Slagsvold, 1996). This likely puts a premium on mate choice
for direct benefits such as territory quality and social partner condition. A hasty assessment
of indirect attributes such as ‘good’, ‘sexy’ or compatible genes (explained under ‘benefits
of mate choice’, Table 1), can then be corrected afterwards by mating with additional
(extra-pair) partners. This ‘correction’ can either take the form of trading-up, that is,
mating with an extra partner only if the additional partner’s genetic quality is better than
that of the current social partner(s), or it can be achieved after mating with multiple
partners via post-copulatory processes such as sperm competition and cryptic mate choice
(Jennions & Petrie, 1997; Jennions & Petrie, 2000).

Genetic compatibility within mated pairs is a key aspect of mate choice that is attributed
to selection for indirect benefits. Post-copulatory mate choice for complementary genes
involved in immune function has been shown in fish, mammals and lizards (Olsson et
al., 2003; Penn, 2002; Penn & Potts, 1999, see also ‘Is extrapair mating a ‘‘Promiscuous Red
Queen"?’ and ‘Inbreeding avoidance: when markers matter ’). In procellariform birds, high
olfactory bulb-to-brain ratios co-occurwith long-termgeneticmonogamy (Bried, Pontier &
Jouventin, 2003; Zelano & Edwards, 2002; Zelenitsky et al., 2011), and genetic compatibility
based mate choice (Strandh et al., 2012). Might olfaction be causally linked to the evolution
of mating systems? If there is such a link, taxa with relatively larger olfactory bulbs would
be expected to be better at accurate mate choice for genetic compatibility prior to mating,
possibly promoting long term genetic monogamy in such taxa (Colegrave, Kotiaho &
Tomkins, 2002). For example, a recent study shows low levels of extra-pair paternity and
male-mediated mate choice based on Major Histocompatibility Complex (MHC) loci in
a largely monogamous seabird (Hoover et al., 2018). On the other hand, mating systems
other than monogamy (e.g., polygyny in lek-breeding species) may also promote olfaction
based mate choice.

More research is needed to identify sexually selected traits contributing to direct benefits.
When an individual can increase its mating success by offering direct benefits, then the
traits that contribute to such benefits (e.g., being fecund, in good condition, able to secure
and defend a fine territory, having good parenting skills) may be subject to mate selection.
Given a genetic basis of a trait it can also respond to selection. Importantly, this means that
many traits that are traditionally seen as products of natural selection are likely to also be
affected by sexual selection, and hence pushed away from their naturally selected optima.
That parental care can be under sexual selection is already well established (Kvarnemo,
2010; Lindström & St. Mary, 2008), but a broader appreciation of other dually selected
traits is likely to improve our understanding of trait evolution.

1b. The influence of polyandry on sexual selection and sexual conflict
The level of polyandry of a population will likely reflect the outcome of interactions
between male- and female-driven strategies. Whereas male strategies are often assumed
to drive and females to resist polyandry, some degree of polyandry can be adaptive and
actively promoted by females. Importantly, polyandry is likely to have drastic effects on
the operation of sexual selection on males. The key implication is that polyandry creates a
new source of variation in male reproductive success in the form of variation in paternity

Lindsay et al. (2019), PeerJ, DOI 10.7717/peerj.7988 7/54

https://peerj.com
http://dx.doi.org/10.7717/peerj.7988


share arising from multiple matings by females and male-male competition over access to
fertilization.

The resulting two episodes of postcopulatory sexual selection (sperm competition
and cryptic female choice; see above) add considerable complexity to the architecture
of variation in male fertilization success (Webster et al., 1995), and consequently to the
operation of sexual selection. Recent work has demonstrated that, contrary to previous
expectations (e.g., Møller, 1998), polyandry can severely limit variation in fertilization
success among males, which weakens precopulatory sexual selection on male mating
success. This process can often drastically reduce the total opportunity for sexual selection
on males, relegating it primarily to postcopulatory episodes (Collet et al., 2012; Jones et al.,
2001; Shuster & Wade, 2003). One important consequence of this effect is that polyandry
acts to reduce the difference between male and female Bateman gradients (Parker &
Birkhead, 2013; ‘Bateman gradient’, Table 1).

Theory on the interaction between female strategies of sperm selection and male
strategies of sperm allocation needs expansion and further development. For instance,
early observations of increased proportional paternity in less as compared to more closely
related males (Olsson et al., 1996) were found robust when controlling for effects such as
unfertilized eggs and parental inbreeding-induced early offspring mortality (Olsson et al.,
1999; Olsson et al., 1997). However, male ejaculation economics could also be influenced
by detection (e.g., based on olfactory cues) of relatedness with the female and competing
rivals (Olsson et al., 2004) as could female sperm choice per se, a supposition supported
by male–female relatedness interactions on a male’s probability of paternity (Olsson et
al., 1996). Female strategies may range from mechanical manipulation of ejaculates to
biochemical selection for sperm in the female tract and at the ovum surface (Firman et
al., 2017). Patterns of cryptic female choice may thus influence male sperm allocation to
matings (Ball & Parker, 2003). Male strategies involve numerous trade-offs, e.g., between
pre-mating expenditures such as mate searching, and post-mating expenditures on sperm
allocation, paternity guarding and paternal investment. The nature of precopulatory
male-male competition (e.g., contest vs. scramble) also affects expenditure on pre- and
post-mating male adaptations (Parker & Birkhead, 2013). So far, while some evidence exists
for a trade-off between pre- and post-mating expenditures (Kvarnemo & Simmons, 2013),
it appears that the nature of precopulatory male-male competition is complex, and may
be influenced by covariation between the scramble-contest axis and the level of polyandry
(sperm competition) (reviewed in Parker, 2016).

When there is negative covariance between male (precopulatory) mating success and
(postcopulatory) paternity share, such trade-offs may play a considerable role in the
evolution and maintenance of alternative mating tactics (Fig. 1). As more fine-grained data
on mating behaviour become available, detailed studies of the distribution of polyandry
within populations and its ramifications on sexual selection can be developed, investigating
for example how mating success of individual males correlate with the polyandry of their
sexual partners (McDonald & Pizzari, 2014; McDonald et al., 2013; McDonald & Pizzari,
2016; Sih, Hanser & McHugh, 2009). This parameter represents the extent to which
precopulatory sexual selection on male mating success (male ‘Bateman gradient’) can
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Figure 1 Results of trade-offs between pre- and post-copulatory investment in polyandrous species.
A male’s reproductive success (i.e., the total number of offspring produced, T ) is determined by: (A) the
number of females with whom he mates successfully (mating success,M ) and their fecundity (i.e., aver-
age number of ova produced, N ), and (B) the proportion of these that he fertilises (P). When reproduc-
tive resources are limited, males face a trade-off between investment in precopulatory (A) and postcopu-
latory competition (B). Under some conditions, such trade-off can have alternative optima for different
male types, setting the scene for alternative mating tactics, in which a discrete phenotype, which invests
preferentially in attracting and monopolising females (e.g., territorial), co-exists and competes with phe-
notypes, which invest preferentially in sperm competition (e.g., sneaker or satellite). Adapted from Parker
(1998).

Full-size DOI: 10.7717/peerj.7988/fig-1

be strengthened or weakened by the distribution of polyandry in a population (McDonald
& Pizzari, 2016).

Finally, while polyandry was originally assumed to exacerbate sexual conflict, there
is increasing appreciation that polyandry may have a more nuanced effect, by relaxing
conflict over some precopulatory decisions (e.g., mating rates Parker & Birkhead, 2013),
while creating conflict over postcopulatory reproductive decisions, such as female selection
of sperm or paternal care.

1c. Is extrapair mating a “Promiscuous Red Queen”?
Birds provide a particularly interesting study system for genetic polyandry because they
often copulate with partners outside the socially monogamous pair bond. Since the advent
of molecular parentage testing tools in the 1980s, hundreds of paternity studies in birds
have revealed that extrapair paternity is common, though the proportion of offspring
sired by extrapair males is quite variable across and even within species (Griffith, Owens
& Thuman, 2002; Westneat & Sherman, 1997). Nevertheless, the question of why and how
this variation in extrapair mating is maintained, especially among closely related species
with similar phenotypes, ecology and life history, is still unresolved.

The first generation of hypotheses attempting to explain patterns of paternity share in
birds focused on how the opportunity for extrapair copulations may vary with breeding
density (Birkhead, Atkin & Moller, 1987;Westneat, Sherman & Morton, 1990) and breeding
synchrony (Stutchbury & Morton, 1995; Westneat, Sherman & Morton, 1990). Although
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these factors might explain some of the variation within species, they do not explain the
broader picture of variation in extrapair paternity rates across species (Bennett & Owens,
2002;Westneat & Sherman, 1997). Consequently, over the last two decades, several attempts
have been made to correlate extrapair paternity rates with various other variables linked to
ecology and life history variation. Some evidence suggests that high extrapair paternity rates
are associated with fast life histories, reduced paternal care, sexual dichromatism, social
monogamy (as opposed to polygyny; ‘mating systems’, Table 1), seasonal migration and
temperate breeding (reviewed inArnold & Owens, 2002;Bennett & Owens, 2002;Hasselquist
& Sherman, 2001; Spottiswoode & Moller, 2004). However, there are two major problems
with these ‘second generation’ explanations; they explain rather small proportions of the
total variance among species, and causal mechanisms for how they influence extrapair
paternity are difficult to infer.

Similar conclusions were reached in a recent study restricted to Passerides songbirds
(Lifjeld et al., 2019) where species with higher extrapair paternity rates show stronger sexual
dichromatism, are more migratory, and have reduced male care at the initial stages of the
breeding cycle (nest-building and incubation). However, effect sizes were small and the
direction of causality obscure. For example, the relationship with sexual dichromatism
was largely due to changes in female, not male, coloration, which might be explained by
plumage adaptations in females to promiscuous behaviour (i.e., more crypsis). Similarly,
males may respond to high extrapair paternity rates by allocating more effort to extrapair
mating than to parental care at the early stages of the nesting cycle when more females are
available for extrapair copulation (Westneat, Sherman & Morton, 1990). Hence, patterns of
association may reflect consequences rather than causes of variation in extrapair paternity.
These results imply a sobering conclusion that neither factors associated with social
opportunities, ecology and life history variation, nor male secondary sexual traits, can
explain the large variation in genetic polyandry documented among bird species in general
or among songbirds in particular. Additionally, rates of extrapair paternity carry a rather
weak phylogenetic signal (Lifjeld et al., 2019), which suggests that the behaviour is an
evolutionarily labile trait that responds rapidly to changing selection pressures.

How then can the diversity in avian genetic mating systems be explained? Extrapair
mating is an arena for sexual conflict where females might be better positioned to win in
terms of controlling the process of internal fertilization, despite the higher value of winning
for males (Lifjeld & Robertson, 1992). Petrie & Kempenaers (1998) argued that variation in
this behavior can only be understood by considering the benefits, costs and constraints to
female choice. Their paper is a timely reminder, since some more recent studies seem to
dismiss an adaptive role for female extrapair mating due to a lack of empirical evidence for
female genetic benefits (e.g., Arnqvist & Kirkpatrick, 2005; Forstmeier et al., 2014). Clearly,
if female extrapair mating is adaptive, the benefits must either be direct (fertility insurance)
or indirect (‘good’, ‘sexy’ or compatible genes), since females seem to obtain nothing but
sperm through extrapair copulation. An implication of this assertion is that female genetic
benefits could be small or non-existent in species with low rates of extrapair paternity,
and that evidence for female genetic benefits should primarily be sought among species
with extensive female extrapair mating. There is indeed evidence for genetic benefits,
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such as a higher cell-mediated immune response, (Arct et al., 2013; Fossoy, Johnsen &
Lifjeld, 2008; Garvin et al., 2006; Johnsen et al., 2000), increased heterozygosity (Foerster
et al., 2003; Fossoy, Johnsen & Lifjeld, 2008; Stapleton et al., 2007; Tarvin et al., 2005) and
enhanced reproductive success for offspring sired by extrapair males (Foerster et al., 2003;
Gerlach et al., 2012) in passerine species with high extrapair paternity rates.

There is evidence to indicate a key role for genes involved in immune function. Passerine
birds have higher rates of extrapair paternity than other clades of birds (Griffith, Owens &
Thuman, 2002). They also have much more polymorphic and duplicated MHC genes (Hess
& Edwards, 2002; Minias et al., 2018; O’Connor et al., 2016; Westerdahl, 2007; O’Connor
et al., 2019), which play an important role in the adaptive immune system. These patterns
could be causally linked. A study on eight species from the passerine sister families
Muscicapidae and Turdidae found a positive correlation between extrapair paternity rates
and sequence diversity at the peptide-binding sites of MHC class II molecules (Gohli et al.,
2013). In one of these species with high extrapair mating, the bluethroat Luscinia svecica,
individuals can have up to 56 different alleles and thus a minimum of 28 duplicated loci
(Rekdal et al., 2018). Gene duplications ensure a high within-individual allelic repertoire
and can be favoured under high pathogen pressure (Bentkowski & Radwan, 2019;Minias et
al., 2018). Mate choice for resistant mates or mates that enhances the pathogen resistance in
offspring will reinforce the natural selection for gene duplications. The positive correlation
between extrapair mating and MHC diversity and duplication would therefore suggest that
species that face strong pathogen-mediated selection evolve an extrapair mating strategy
for immunogenetic benefits.

In a ‘Red Queen’ (Table 1) coevolutionary dynamic between pathogens and host
immunity, the strength of pathogen-mediated selection may fluctuate within a species
over time, and also vary among species with similar ecology and distribution at any point
in time. If social mate choice does not provide enough options for females to choose
the better genes, extrapair mating might evolve as an alternative mating strategy. Once
most individuals have acquired an effective allelic repertoire to fight off pathogens, or
social mate choice offers sufficient options, the benefit of female extrapair mating will be
reduced and the mating system will revert towards sexual monogamy. This ‘Promiscuous
Red Queen’ hypothesis (Fig. 2) can therefore explain why divergence in extrapair mating
systems evolves rapidly among closely related species.

Genotyping of hypervariable and highly duplicated genes like the passerine MHC with
next generation sequencing methods holds a great potential for testing predictions of the
Promiscuous Red Queen hypothesis in species with extensive extrapair mating and highly
diversified immune genes (Lighten, Van Oosterhout & Bentzen, 2014;O’Connor et al., 2016;
Sebastian et al., 2016; reviewed by O’Connor et al., 2019). Many sets of samples utilized
previously for paternity studies should be readily available for testing of MHC diversity.

Female extrapair mate choice for immune genes can result in different non-random
combinations of parental alleles. Females might prefer specific beneficial alleles (good
genes) or alleles that make a good match to her own alleles (compatible genes). What
constitutes a favourable allelic match should be investigated by analyzing the fitness of
individuals with different allelic repertoires (Milinski, 2006). If maximum allelic diversity
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Figure 2 A graphical illustration of the ‘‘Promiscuous Red Queen’’ hypothesis for the evolution of im-
mune gene diversity and variation in female promiscuity. The diversity of immune genes in a population
is shaped along two selection pathways, both subject to the Red Queen dynamics of host-parasite coevolu-
tionary cycles (see text box). The first one, which is relevant for all species, is natural selection caused di-
rectly by pathogens resulting in differential survival of alleles. The strength of selection is determined by
the abundance, diversity and virulence of pathogens in the environment, primarily exposed through diet
and habitat-specific variables. The second pathway, sexual selection, kicks in when random mating (with
respect to immune genes) is an inferior strategy compared to a mating preference for certain alleles. For
species that form pair bonds, mating preferences can theoretically be exerted both in the pairing process
and in subsequent extrapair matings, and can either target specific alleles (good genes) or alleles that make
a good match to the female’s own genotype (compatible genes). Pathogen-mediated selection can there-
fore act directly on organisms through a natural selection pathway, and indirectly through a sexual selec-
tion pathway, under a ‘‘Red Queen’’ scenario. When social mate choice is largely driven by non-genetic re-
source benefits and is random with respect to genes, genetic preferences can be exerted in extrapair mate
choice. Females can thereby get the best (resources and genes) out of two separate choice situations. When
social monogamy constrains female choice of genes, extrapair mating will evolve. The stronger the genetic
benefits through pathogen-mediated selection on offspring fitness, the more effort females should devote
to extrapair mating. When beneficial alleles increase in frequency and pathogens become less harmful, ex-
trapair mating becomes less important. The ‘‘Promiscuous Red Queen’’ model is thus a possible explana-
tion to the variation in extrapair mating systems observed among species and populations, especially in
passerine birds.

Full-size DOI: 10.7717/peerj.7988/fig-2

(in terms of number or sequence diversity of alleles) yields the highest fitness, females
should choose males with dissimilar alleles (Strandh et al., 2012). If an intermediate allelic
diversity is optimal, as too many alleles can lead to autoimmunity, then females should
choose a mate that gives an intermediate allelic diversity in the offspring (reviewed in
Milinski, 2006). Regardless of what the optimal allelic diversity for individuals could be,
the model predicts that extrapair offspring should have an allelic diversity closer to the
population optimum than that of within-pair offspring. If the optimum lies close to the
population mean, then observed choices may not differ from each other or from a random

Lindsay et al. (2019), PeerJ, DOI 10.7717/peerj.7988 12/54

https://peerj.com
https://doi.org/10.7717/peerj.7988/fig-2
http://dx.doi.org/10.7717/peerj.7988


model in mean values, only in variances. Even if the mate choice optimum lies close to the
population mean and there is stabilising selection (reduced variance) around this optimum
in an ecological time frame, MHC diversity can still increase over evolutionary time if the
optimum moves (Estes & Arnold, 2007).

A further challenge will be to reveal a possible mechanism for the mating preference;
either there could be pre-copulatory cues for a behavioral discrimination among males,
or cryptic female sperm selection mechanisms in the oviduct or at the ovum (Firman et
al., 2017). A recent study reported that the chemical composition of preen wax reflects
similarity at MHC II genotypes in a songbird (Slade et al., 2016), which opens up the
possibility for pre-copulatory mate choice based on olfactory cues in passerine birds, as
previously documented in seabirds (e.g., (Strandh et al., 2012) (Direct and indirect benefits
of mate choice—implications for mating systems and sexual selection).

1d. Inbreeding and mate choice—when are relatives preferred?
Inbreeding affects fitness negatively in a wide range of taxa (Crnokrak & Roff, 1999; Keller
et al., 1994; Keller & Waller, 2002), with an increase in genome-wide homozygosity in
the offspring of related parents. Resulting effects on fitness can arise through partial
dominance or overdominance; the result of either being the promotion of inbreeding
avoidance mechanisms (Charlesworth & Charlesworth, 1987; Marr, Keller & Arcese, 2002).
However, inbreeding may not systematically result in selection for inbreeding avoidance,
and it is challenging to predict when an organism avoids, tolerates or even prioritizes
consanguineous matings (Szulkin et al., 2013). Building on well-developed theory that
underpins similar phenomena in organisms such as plants, where selfing is common, a
consideration of both the costs of inbreeding avoidance and benefits of inclusive fitness
is necessary. If inbreeding costs are sufficiently low, both sexes can be selected to inbreed
(Kokko & Ots, 2006; Parker, 1979; Parker, 2006) as a means to promote gains in inclusive
fitness among related individuals. This can be achieved through extrapair copulations,
although such mating decisions may come at the cost of a decrease in the fitness of
extrapair relative to within-pair young (Lehtonen & Kokko, 2011). However, although an
increase in inclusive fitness was suggested as an explanation for matings among related
individuals as long as four decades ago (Parker, 1979), it has remained widely ignored
by animal ecologists. More recent advances in evolutionary genetic theory have restored
interest in questions related to inbreeding biology (Kokko & Ots, 2006), and empirical
data show refined mate choice based on female inbreeding status. In burying beetles, only
females that are inbred themselves, with greater risk of a genetic compromise by inbred
partners, choose outbred males (Pilakouta & Smiseth, 2017).

Future work should address the relationship between sexual selection and inbreeding in
wild animal populations (see ‘Inbreeding avoidance: when markers matter ’). Recent software
developments, such as Rhh (Alho, Valimaki & Merila, 2010), have proven very useful to
investigate large data sets focusing on the effects of inbreeding on the process of sexual
selection and other components of fitness (Bebbington et al., 2017; Forstmeier et al., 2012).
Furthermore, progress in genomic and theoretical investigations of inbreeding (Hedrick
& Garcia-Dorado, 2016) and sexual selection (Anthes et al., 2017) provide a thorough
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foundation for future work on aspects of sexual selection and inbreeding biology in the
wild. In the next section we take a closer look at how individuals may avoid inbreeding.

1e. Inbreeding avoidance: when markers matter
Inbreeding avoidance can occur through polyandry (Bretman, Wedell & Tregenza, 2004;
Firman & Simmons, 2008; Foerster et al., 2003; Olsson et al., 1996; Simmons et al., 2006;
Tregenza & Wedell, 2002), dispersal (Bollinger, Harper & Barrett, 1993; Greenwood, 1980;
Pusey, 1987), and kin recognition (Gerlach & Lysiak, 2006; Hoffman et al., 2007). In the
latter, MHC haplotypes have been proposed as a cue associated with kin discrimination,
due to potential correlations between the degree of shared MHC alleles and genome-
wide relatedness (Brown & Eklund, 1994; Penn & Potts, 1999; Potts & Wakeland, 1993).
Individuals that mate with MHC dissimilar partners are then expected to avoid potential
fitness costs associated with inbreeding, while optimizing (Kalbe et al., 2009; Madsen
& Ujvari, 2006; Reusch et al., 2001) or maximizing offspring MHC heterozygosity, via
heterozygote advantage (Doherty & Zinkernagel, 1975) or negative frequency dependence
(Hedrick, 2002;Milinski, 2006; Slade & McCallum, 1992).

MHC genes encode glycoproteins that bind pathogen-derived peptide fragments on
cell surfaces, and thus play an important role in the immune system (Janeway et al., 2001;
see ‘Is extrapair mating a ‘‘Promiscuous Red Queen’’? ’). Therefore, two selective forces
may underlie MHC-based mate discrimination, inbreeding avoidance and enhanced
immunocompetence. The function of MHC in mate choice and the importance of
disentangling these two fitness-related phenomena has been demonstrated in wild Atlantic
salmon (Salmo salar) (Landry et al., 2001), and in the Swedish sand lizard (Lacerta agilis)
(Olsson et al., 2003). Specifically, mated salmon pairs showed greater dissimilarity at their
functional MHC class II β proteins than expected under random mating, but did not exert
mate discrimination according to genetic relatedness or inbreeding avoidance.

Although MHC loci may still act as a cue for kinship in some systems (reviewed by Penn
& Potts, 1999; Spurgin & Richardson, 2010), MHC similarity betweenmated pairs should be
interpreted with a degree of caution. It is essential to distinguish between degree of kinship
and MHC similarity, and avoid generalization with regards to the genetic mechanisms
underlying differential reproductive investment in vertebrates. In other words, a sound
scientific approach in studies of disassortative mating patterns relies on an adequate choice
of genetic marker.

1f. Research on broadcast-spawning invertebrates can advance the field of
sexual selection
While Darwin (1871) dismissed the ‘lowest classes’ from sexual selection, it is now
appreciated that sexual selection can indeed operate in such taxa, albeit in different ways
(Levitan, 1998). There is every reason to suppose that even in sedentary broadcast spawners,
sexual selection can affect gamete traits (Evans et al., 2012; Evans & Sherman, 2013), gonads
and even life history traits (Parker et al., 2018). For example, eggs exposed to experimental
sperm mixtures can discriminate between sperm from different male genotypes (Palumbi,
1999), and sperm move preferentially towards more genetically compatible ova (Evans et
al., 2012). Gonadosomatic indices of conspecific males and females can vary considerably
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as a result of sperm competition and sperm limitation levels, relative costs to the sexes of
gonad tissue and gamete production, and the trade-off between growth and reproduction
(Parker et al., 2018).

One of the benefits of studying broadcast spawning invertebrates in the context of sexual
selection is that they represent an early stage in the sexual cascade (Parker, 2014; Parker
& Pizzari, 2015; Table 1), capturing a phase before the evolution of enhanced mobility
and behavioural complexity, which, as Darwin realized, was essential for the evolution of
adaptations through pre-copulatory sexual selection. Since it is often difficult to separate
pre-and post-copulatory components of sexual selection, sedentary broadcast spawning
invertebrates present a unique opportunity to study the type of adaptation that can arise
through sexual selection and sexual conflict at the gametic level, eliminating pre-copulatory
considerations. A question that arises is why these taxa have remained ‘frozen’ at a sedentary
level, without selective forces favouring increased mobility and female targeted gamete
release, since traces of such behaviour are seen in ‘pseudo-copulation’ in some echinoderms
(Keesing et al., 2011) and pairing behaviour in certain cnidarians (Tiemann et al., 2009).

2. Sender and receiver mechanisms shaping signal design
The proximate physiological and neurological mechanisms for production, emission and
perception of signals are essential keys to both adaptive and non-adaptive aspects of sexual
communication. In particular, the design and evolutionary trajectories of signals are shaped
by both content (e.g., accuracy and honesty of quality advertisements), and efficacy (e.g.,
sensory ecology and receiver psychology). In the sections below, we discuss developments
and challenges in these two areas.

First, themediation of signal honesty inmany study systems likely depends on a dynamic
and complex integration of social and physiological costs, which may be both spatially
and temporally variable. It can be a formidable empirical challenge to measure the ‘‘right’’
parameters at the right time, but for detailed understanding of honest signaling, this is the
way forward.

Second, and especially relevant to the biodiversity theme of our workshop, we address the
increasingly appreciated impact of receiver biases (sensory, perceptual or cognitive) on both
design and diversification of sexually selected traits (see e.g., Cummings & Endler, 2018;
Ryan & Cummings, 2013; Ten Cate & Rowe, 2007). Here also lie great empirical challenges,
for example to objectively identify and quantify the relevant dimensions of signal traits,
signaling conditions and sensory tuning, to experimentally demonstrate receiver biases,
and, in appropriate cases, to phylogenetically reconstruct the origins and contingencies of
these traits.

2a. Mediation of signal honesty in a dynamic framework: integration of
social and physiological costs
Severalmodels of sexual selection predict that signal traits are honest indicators of individual
quality (Andersson, 1986; Folstad & Karter, 1992; Grafen, 1990; Hamilton & Zuk, 1982;
Zahavi, 1975). An implicit prediction of these models is a consistency in the physiological
mediation of honesty, that is, the costs associated with the trait should be fairly constant
over time. This assumption is likely unrealistic given that physiological condition can
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change drastically, even over short periods of time (e.g., changes in physiology due to
illness or a variable environmental context), while many signal traits are produced once
and are fairly static. Further, the expression of signal traits is relative in the sense that
the same signal can be viewed as more or less exaggerated, depending upon the social
context, such as the signal intensity of conspecifics in the population. The mechanisms
that allow morphological signal traits to convey relevant information within a changeable
social context is an interesting puzzle, especially in cases where traits are developed and
then fixed for a set period of time during which reproductive transactions take place,
such as horns and many aspects of plumage that are developed annually. For dynamic
traits that can be modulated in real-time, such as song rate or acrobatic courtship display,
the problem becomes a bit less complicated because signalers can behaviorally adjust to
changing physiological conditions and social context.

There is recent appreciation that even static signal traits have an active rather than
constant relationshipwith physiology andbehavior, which likely has important implications
for determining how these signals remain coordinated with behavior as social contexts
change (e.g., Merrill et al., 2014; Safran et al., 2008; Tibbetts, 2014; Vitousek, Zonana &
Safran, 2014). Still, questions remain about if and how these interactions maintain the
transmission of honest information to conspecifics.

A cornerstone of both physiological and social cost models of honest signaling is that
signal costs are less steep for high-condition compared to low-condition individuals,
which creates variation in optimal signal expression (Grafen, 1990). Social challenge of
signal expression is relatively robust to this assumption (for a review see Webster, Ligon
& Leighton, 2018), but necessarily reliant on frequency of challenge and either potential
or realized social costs. Physiological costs can also vary conditionally, for example,
both testosterone-induced immunosuppression and glucocorticoid-related ectoparasite
load differ based on the quality of the signaler in blue tits (Roberts & Peters, 2009) and
sand lizards respectively (Lindsay et al., 2016). Webster and colleagues (2018) argue that
physiological costs, although subject to intensive scrutiny in the last few decades, may be a
less evolutionarily stable mechanism for honest signal mediation than social costs. Where
selection for social punishment of cheaters should increase as the benefits of social status
become higher, selection should favor a decoupling between costly physiological processes
and trait expression, such as through upregulation of target sensitivity to hormonal
stimulus. However, the limited empirical support for physiological cost models of honest
signal mediation (i.e., immunocompetence handicap hypothesis; Roberts, Buchanan &
Evans, 2004) may instead reflect the challenges of detecting these costs.

These challenges include the following. (1) The pleiotropic actions (Table 1) of key
biomarkers of physiological state, such as pro- and antioxidants, testosterone, and
glucocorticoids, can have contradictory effects on different body systems, requiring
measurement of a broad panel of physiological costs. For example, simultaneous
and opposing relationships have been detected between hormone titre and endo- vs.
ectoparasite load (Fuxjager et al., 2011; Lindsay et al., 2016). (2) Time-lags between when
biomarkers are elevated and when they exert their influence can obscure detection of costs
and necessitate repeat sampling and a knowledge of multiple interacting physiological
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systems. For example, a direct link between oxidative stress and telomere length has been
difficult to establish (Boonekamp et al., 2017), but when this relationship was examined
across multiple sampling periods, it became clear that telomere length near the end of
life is strongly predicted by measurements of oxidative stress experience earlier in life
whereas simultaneously measured oxidative stress was unrelated (Olsson et al., 2018). (3)
Physiological production costs are presumably accrued during a brief time-window of
ontogeny, often distinct from the period in which the signal is utilized in socio-sexual
interactions. This necessitates researchers to have a deep knowledge of how and when
signals are formed and requires application of appropriate experimental procedures during
these critical time frames.

The degree to which social enforcement vs. physiological costs mediate signal honesty
likely varies with social context (gregariousness, presence of dominance hierarchies,
population density) and it is clear that social costs can have physiological outcomes and
vice versa. For example, testosterone stimulates aggressive behavior, and social aggression
itself can increase testosterone further (‘‘challenge hypothesis’’,Wingfield et al., 1990). Such
aggressive social engagement can simultaneously influence production of glucocorticoids
(Creel, 2001; Creel et al., 2013), which, in turn, can impact investment in reproductive
behaviors and testosterone production (Sapolsky, Romero & Munck, 2000). Both hormones
have been causally and correlationally linked to signal expression in multiple systems
(Cote et al., 2010; Cox, Zilberman & John-Alder, 2008; Fernald, 1976; Leary & Knapp, 2014;
Lendvai et al., 2013; Lindsay et al., 2016; Lindsay, Webster & Schwabl, 2011; Mougeot et al.,
2004; Peters et al., 2000) and the relationship between signal and hormone titre itself
can be bidirectional (Laubach et al., 2013; Safran et al., 2008; Tibbetts, Crocker & Huang,
2016). If an individual is in poorer condition than when the signal was produced (and
any production costs accrued), secondary physiological costs associated with carrying and
defending an elaborate signal may accumulate. An emerging mismatch then, between the
intensity of the signal and the behavior and apparent health of the signaler, allows the
receiver to assess true condition (i.e., ‘‘integrative incongruence hypothesis’’, Tibbetts,
2014), despite the fact that the signal itself may remain seasonally static.

Ideas for future questioning and caveats to this type of research have been addressed
elsewhere (Tibbetts, 2014; Vitousek, Zonana & Safran, 2014; Webster, Ligon & Leighton,
2018). Studies that include observations of trait and behavior combinations with explicit
full-factorial tests that adjust signal intensity, behavior, and measure consecutive and
simultaneous social and physiological costs are needed. Such research should be paired
with examination of long-term fitness consequences of potential costs.

2b. Receiver mechanisms and biases that shape signal design
‘‘Sensory biases may cause elaboration in the absence of the Fisherian process. . . and more
reasonably be the null hypothesis and primitive model on which to build other components
of sexual selection’’ (Price et al., 1987).

Conspicuous flowers and fruits attracting pollinators and dispersers; aposematic and
warning signals; social and sexual threat displays; nature is full of signals that have been
exaggerated without hitch-hiking with a genetically correlated preference, but simply by
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exploiting a biased detection, preference or aversion in the intended receiver. Such receiver
biases can be sensory, perceptual or cognitive (Ryan & Cummings, 2013), hardwired or
learning-based (Ten Cate & Rowe, 2007), adaptive or neutral, or even maladaptive if
compensated by benefits in another context in which the bias is adaptive and perhaps
originated.

Like all communication signals, sexual displays can be deconstructed into two defining
properties: information content, and efficacy (Andersson, 2000; Guilford & Dawkins, 1991).
Traditionally, models of sexual selection were concerned with the adaptive significance
of female choice and whether the information content of male ornaments conveyed
direct or indirect (genetic) fitness consequences (Andersson, 1994; see also ‘Direct and
indirect benefits of mate choice implications for mating systems and sexual selection’, above).
In contrast to such ‘sender-precursor models’ (see Bradbury & Vehrencamp, 2011) of
signal evolution, ‘receiver-precursor models’ shift focus to efficacy aspects such as signal
conditions (background, attenuation) and receiver properties, by exploring how signal
design may originate and be exaggerated to exploit sensory or cognitive receiver biases
(collectively termed ‘perceptual biases’ by Ryan & Cummings (2013). Empirically this
was triggered by classic studies of preferences and biases that phylogenetically seemed to
pre-date the visual or acoustic signal trait (Basolo, 1990; Ryan et al., 1990). Additionally,
exploitation of pre-existing biases has been suggested as a common origin of sexual signal
evolution (Arnqvist, 2006). Yet, despite the obviously crucial importance that receiver
properties must have for signal design and evolution (Guilford & Dawkins, 1991; Guilford
& Dawkins, 1993; Jansson & Enquist, 2005), studies of sexual signal evolution have, with
some notable exceptions (Arak & Enquist, 1993; Enquist & Arak, 1993), largely neglected
receiver psychology (Table 1), and studies of receiver psychology have rarely interpreted
results in an evolutionary context.

While most studies of receiver biases in sexual selection have focused onmate choice, the
application of receiver precursor models to agonistic (threat) signaling systems presents
a very different context. Firstly, agonistic signals have the potential to be emancipated
from the constraints of direct linkage to male quality; some mechanism must maintain
signal honesty, which may be achieved through socially mediated costs. Thus, agonistic
signals may be more evolutionarily labile than epigamic signals, potentially allowing for
higher rates of change in signal form. Secondly, the time scale for signal information to
manifest can be much shorter for agonistic signals; a male can test the honesty of another
male’s signal directly. This interaction also sets the stage for a learning-based receiver bias,
essentially a discrimination task analogous to those shown to generate ‘generalization’ in
the psychology literature (Ghirlanda & Enquist, 2003; Ten Cate & Rowe, 2007; Table 1).
Therefore, agonistic signaling systemsmay be ideal candidates for investigating the influence
of receiver biases on signal design and exaggeration. Indeed, recent studies have revealed
ongoing selection by receivers on agonistic signal design, compatible with patterns of
convergent evolution in the direction of a receiver preference (Ninnes & Andersson, 2014;
Ninnes et al., 2015; Ninnes, Webb & Andersson, 2017).

One of the primary challenges for research into this field is to tidy up the definitions and
terminology used in regard to receiver psychology. Whereas the environmental constraints
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and selective forces on both senders and receivers are well covered and structured in
the Sensory Drive model (Cummings & Endler, 2018; Endler & Basolo, 1998), there is
some confusion regarding the terms used to describe the neurological mechanisms of
receiver biases (e.g., sensory, perceptual, cognitive), as well as the implications for signal
selection (e.g., supernormal stimulus, generalization, peak-shift) (Endler & Basolo, 1998;
Ghirlanda & Enquist, 2003; Ryan & Cummings, 2013; Ten Cate & Rowe, 2007). Figure 3 is
an attempt to distinguish some of these terms and how they relate to each other, but many
questions remain. For example, are ‘pre-existing biases’ inherent hard-wired preferences,
or a function of the psychology of discrimination tasks (i.e., generalization; Ghirlanda &
Enquist, 2003; Ten Cate & Rowe, 2007)? Future work should seek to integrate conceptual
frameworks from biology and psychology to help elucidate mechanistic processes. For
example, an examination of ‘pre-existing biases’ in signal design should include methods
standard to the field of psychology such as the generation of response gradients by testing
responses at multiple points on a signal dimension. Second, is the impact of receiver
psychology on sexual signal design, through selection on signal efficacy, underappreciated?
‘Virtual evolution’ experiments have suggested that receiver biases similar to empirically
demonstrated generalization gradients (Jansson & Enquist, 2003), are sufficient to drive
signal exaggeration (Jansson & Enquist, 2005). This aligns with for example the consistent
and pre-existing receiver biases found in closely related widowbirds and bishops (Euplectes
spp), displaying varying degrees of signal exaggeration (Ninnes & Andersson, 2014; Ninnes
et al., 2015; Ninnes, Webb & Andersson, 2017; Pryke & Andersson, 2002). Echoing previous
researchers including Endler (1992), Ryan & Cummings (2013) and West-Eberhard (2014),
we suggest that intensified attention to the origins, mechanisms and response gradients of
receiver biases will bring us closer to the neuroethology of signal selection and the design
and diversity of sexual signals. In ‘Mate choice and ecological speciation’ we also discuss
some of the implications of evolving receiver preferences on speciation.

Lastly, the notions of ‘aesthetic preferences’ and ‘beauty’, used in both Darwins and
Fishers writings on female choice, have been treated as objective biological traits (Prum,
2017; Renoult, Bovet & Raymond, 2016), leading to heated debate (e.g., Borgia & Ball, 2018;
Patricelli, Hebets & Mendelson, 2018). Renoult & Mendelson (2019) argue that aesthetic
preferences represent neurobiologically efficient and thereby adaptive cognitive processing,
strongly resembling the ‘inevitable signal recognition biases’ suggested by the artificial
neural network models of Enquist & Arak (1993). Recent controversy has been instigated
by Prum (2012) and Prum (2017) who argues not only that the Fisherian process should
be the null model of the evolution of mating preferences, but that any evolved cognitive
bias is the ‘aesthetic sense’ while the exaggerated signal properties define ‘beauty’. These
assertions received several critical responses (e.g., Borgia & Ball, 2018; Patricelli, Hebets &
Mendelson, 2018), also from quarters that agree with Prum that ‘‘mate choice for indicators
is often assumed as an explanation for the evolution of elaborate displays without sufficient
consideration of other processes’’ (Patricelli, Hebets & Mendelson, 2018).

In our own view, perceptual and cognitive biases are likely to be key components of the
‘aesthetic sense’ that Darwin (1871) attributed to choosy females (see also Renoult, 2016;
Renoult, Bovet & Raymond, 2016). Moreover, since perceptual biases may drive ornament
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Figure 3 Generalization gradients and origins of receiver bias. (A) Receiver biases exert directional se-
lection on a signal trait (e.g., tail length in birds) and may create heightened responsiveness to supernor-
mal stimuli. The blue curve depicts responsiveness by an unbiased receiver. Peak shift (orange line), area
shift (green line), and open-ended (red line) ‘generalization gradients’ (see Table 1: Glossary) are gener-
ated by discrimination learning, which here is illustrated by a negative (S−) and a positive (S+) train-
ing stimulus. (B) Other receiver biases can also derive directly from a peripheral sensory bias (e.g., in the
retina), or from the higher level ‘Perceptual’ processing of the sensory input (e.g., visual cortex). The gen-
eral increase in phenotypic plasticity from peripheral to higher level neural processing is indicated.

Full-size DOI: 10.7717/peerj.7988/fig-3

or armament exaggeration without involving any sender-receiver genetic covariance or
the Fisher process (Price et al., 1987), it may be a simpler, and more testable, ‘null model’
of signal selection in general, and as regards sexual selection, it would apply to both mate
choice and contest competition.

3. Genetic architecture of sexual selection
Understanding the genetic architecture of sexual selection, and thus evolvability and
constraints on sexually selected traits, is a long-term goal of the field and one where
substantial progress has been made in recent years. Notable examples include advances in
our understanding of the genetic basis of stripes in cichlid fish (Kratochwil et al., 2018),
QTL loci underlying song in Hawaiian crickets (Ellison & Shaw, 2013) and other insects
(Gleason et al., 2016), morphological traits known to be targets of sexual selection in birds
(Hansson et al., 2018), and genes involved with conversion of red carotenoid pigments in
birds (Lopes et al., 2016; Mundy et al., 2016). There is an increasing number of studies that
demonstrate convincing heritability of key sexually selected traits, like copulatory organs
or chemical signaling, and there are several examples demonstrating the evolutionary
consequences of sexual selection, such as incompatibilities between species (Rose, Brand
& Wilkinson, 2014). However, the great progress in identifying genes associated with
morphological, coloration and signaling traits known to be under sexual selection has not
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been accompanied by similar demonstrations of predicted evolutionary signatures in many
such genes. Specifically, no example exists, to our knowledge, in which the genetic basis of
a sexually selected trait has been shown to evolve rapidly in response to recent or ongoing
sexual selection, either experimentally, in the lab, or in nature.

In contrast, rapid evolution is easier to detect in reproductive genes such as accessory
gland and reproductive proteins (Finn & Civetta, 2010;Hurle et al., 2007;Wyckoff, Wang &
Wu, 2000) and many gene systems associated with interactions between sperm and egg as
well as copulatory proteins have been identified in Drosophila. Proteomic approaches are
adding detail to our understanding of the complex chemical cocktails exchanged during
mating in flies, primates and other groups (Claw et al., 2018; Gotoh et al., 2018; Wilburn et
al., 2018). The predicted rapid evolution of genes involved in co-evolutionary interactions
between the sexes, and between hosts and parasites, has been demonstrated repeatedly.
For example, immune genes that may serve as ‘good genes’ such as MHC genes (see ‘Is
extrapair mating a ‘‘Promiscuous Red Queen’’?) undergo a type of cycling characterized
by rapid evolution (Eizaguirre et al., 2012). A greater understanding of the evolutionary
dynamics of genes underlying signaling and performance traits therefore stands as a major
gap in our field.

3a. What genes underlie variation in performance?
A goal of contemporary research in the field of sexual selection is the identification
of candidate loci for performance. Detailed and often time-intensive field studies of
sexual selection are required to identify the phenotypes associated with display or mating
success. When combined with modern sequencing techniques, these types of data make it
possible to contrast the expression levels or genotypes of the successful individuals with the
unsuccessful, revealing key loci underlying measures of performance. Although in principle
straightforward, almost no published studies have used such a protocol (but see Johnston
et al., 2013). While sequencing on a large scale can still be cost prohibitive, perhaps more
importantly, the type of detailed behavioral observations producing reliable individual data
on complex parameters like ‘‘mating success’’ are expensive in terms of investment in time
and in effort. Field studies on the great snipe (Gallinago media) illustrate the latter point
(Höglund et al., 2017). To obtain reliable sample sizes, the field work has been conducted
over many years under sometimes harsh field conditions and the data is subject to problems
inherent to all multi-season datasets, such as observer, site and year effects.

Importantly, genotype effects onmating success may be context dependent, as appears to
be the case in great snipes. The effect of candidate SNPs (Single Nucleotide Polymorphism)
on great snipe mating success depended on whether birds were infected with avian malaria,
as revealed by significant interaction terms among infection status and genotype in a few
loci (Höglund et al., 2017). Genomic studies of sexual selection are emerging (see ‘Genomic
properties of speciation through sexual selection’), and more such are required to make
general conclusions. For this to be possible, long term studies with careful observations
and detailed knowledge of natural history combined with genomic data is the only remedy.
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3b. Genic capture and ongoing sexual selection: how many genes
are enough?
A classic question in sexual selection theory is to what extent the evolution of secondary
sexual traits is constrained by the exhaustion of genetic variation resulting from the process
of selection itself (‘the lek paradox’; Andersson, 1994; Kirkpatrick, 1982; Table 1). In some
cases trait expression is dictated by allelic variation at a single locus, whereas in others trait
expression is polygenically determined. If genetic variation limits exaggeration of secondary
sex traits, this effect should decrease with the number of loci dictating trait development.
For example, mating with close relatives contributes to loss of genetic variation and thus,
inbreeding opposes sustained sexual selection and secondary sex trait evolution (Keller &
Waller, 2002). Empirical research in the fields of sexual selection and evolutionary genetics
are inconsistent in terms of the generality of these fundamental processes.

Much discussion has been directed toward the investigation of genetic architecture of
multilocus signaling traits with the underlying idea that strongly condition-dependent traits
capture all the genetic variance in condition (‘genic capture’, Rowe & Houle, 1996; Tomkins
et al., 2004; Table 1). Since many loci provide a large target for mutations, genetic variation
could persist over time despite strong directional selection. Work on genic capture has
until recently been largely theoretical, because the genotypes of few phenotypic traits are
usually unknown in natural populations. An example demonstrates how genetic variation
for a strongly polymorphic secondary sex trait, horn type in Soay sheep, is maintained
by a trade-off between natural and sexual selection in a single gene (RXFP2, Johnston et
al., 2013). Horn shape is under strong sexual selection in males, but not in females, so
another hypothesis, intra-locus sexual antagonism (see ‘How do genome processes impact
sexual selection and sexual conflict? ’) could also be rejected (Johnston et al., 2013). Work on
field caught Drosophila, however, showed that even with substantial genetic variance in
a secondary sex trait, cuticular hydrocarbons, the vast majority of this variation was not
closely associated with the direction of sexual selection (Hine, Chenoweth & Blows, 2004).
Despite condition-dependence of traits, genetic variation underlying trait expression can
be depleted by sexual selection in the wild and thus genic capture did not offer a resolution
to the lek paradox in this system. In an interesting empirical example of genic capture,
chemical mutagenesis of the male guppy (Poecilia reticulata) germline negatively affected
courtship displays but not colouration, indicating that the former is a large mutational
target (Herdegen & Radwan, 2015). Such mutagenic approaches, when complemented
with whole-genome sequencing to verify affected loci, offer a robust approach to study
mutational targets, but are limited in their applicability to sexual selection on polygenic
traits in the wild. Although the presence of only a few genes can be adequate for evolution
of secondary sexual characters to proceed in some systems, multiple and variable genes
may not be enough to sustain character evolution in other systems.

3c. How do genome processes impact sexual selection and sexual conflict?
Although much empirical research related to sexual selection has been conducted
extensively at the organismal level, little progress has been made in identifying
the genomic mechanisms responsible for various sexually selected traits (but see
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Johnston et al., 2011). Because sexual dimorphism is often the evolutionary outcome
of sex-specific selective patterns such as sexual selection, understanding the molecular
basis of sexually dimorphic traits is key to understanding evolution by sexual selection.
Whereas sex-biased gene expression has been documented in various tissues in many
taxa, demonstrating dimorphism at the molecular level (e.g., Leder et al., 2010; Mank et
al., 2010; Zhang et al., 2007), it is unclear in many cases whether sex-biased genes are
actually antagonistic or if they are a result of current or past antagonistic effects (Parsch &
Ellegren, 2013). Additionally, although there are numerous theoretical papers connecting
the evolution of sex chromosomes, sex-biased expression and sexual antagonism (e.g.,
Kirkpatrick & Guerrero, 2014; Mank, Hosken & Wedell, 2014; Parsch & Ellegren, 2013), it
has been difficult to test hypotheses in the wild (but see empirical advances by Hollis et al.,
2014; and review byMank, 2017). Much of the difficulty in identifying the genomic bases of
sexually selected traits is due to our limited understanding of the genome. It is increasingly
feasible to gather DNA, mRNA and protein sequence data, yet understanding genomic and
proteomic modifications, such as epigenetics or protein phosphorylation, and the details
of interactions among molecules is also necessary to understand the final phenotype.

It has become widely accepted that regulatory variation is the likely source for much
of the observed phenotypic variation among and within species (e.g., Carroll, 2008), and
regulatory differences have been implicated as amechanism resulting in sexual dimorphism
(Williams et al., 2008). If one considers the concept of intra-locus conflict, where males
and females exhibit different fitness optima at a genomic locus, conflict may be resolved
by differential regulation of that gene in males and females without dramatic changes
in the genome. As suggested by Rice (1984), the sex chromosomes may be hotspots for
sexually antagonistic genes, but they also provide a potential mechanism for resolving
both intra- and inter-locus conflict through the maintenance of sex-specific alleles. In
effect these alleles must be largely regulatory, since there is little unique information on
the sex chromosomes in many known systems, and recent work shows that noncoding
regulatory sequences alone are sufficient to drive sex reversal in mice (Gonen et al., 2018).
Consistent with this idea, replacement of Y chromosomes between species of flies results
in genome-wide changes in gene expression, mediated by regulatory factors encoded
on the Y chromosome (Branco, Hartl & Lemos, 2013; Sackton et al., 2011). Additionally,
organisms without sex chromosomes still exhibit sex differences, most basically in gonad
formation and physiology, but also in behaviour. Thus differential regulation leading to
sexual dimorphism must be achieved through regulatory cascades that in some cases can
be initiated by one or few genes, or even by the environment (Bachtrog et al., 2014).

Another question is which ontogenetic or polyphonic stage to sample individuals in
order to understand the genetic basis of a sexually selected trait. Much of the obvious
morphological and behavioral differences between the sexes are studied in sexually mature
organisms, yet the molecular bases for many of these differences, particularly morphology
or coloration, are likely due to differential expression initiated early in development before
the trait becomes obvious (Hubbard, Jenkins & Safran, 2015). This is the case with sexually
dimorphic abdominal pigmentation in D. melanogaster (e.g., Williams et al., 2008), and
most studies that identify differences in gene expression between species or ontogenetic
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stages are in fact identifying regulatory differences (Mallarino et al., 2016). This early
development of dimorphism makes it difficult to associate the phenotypic differences
observed in adult organisms with specific DNA differences or mRNA expression that may
underlie the trait. Studies examining the molecular basis of sexually selected signals in
birds often focus on the seasonal elaboration of traits such as plumage color in an effort to
identify relevant genes (Lopes et al., 2016; Mundy et al., 2016). New epigenetic techniques,
such as ATAC-seq, can identify regions of the genome with open chromatin, unwound
from nucleosomes and available for binding by transcription factors, and promise to
identify new ways in which the genome can be differentially modulated between the sexes
without requiring differences in DNA sequence (Buenrostro et al., 2015).

Molecular pleiotropy and the physical location and recombination environment of
a gene may constrain its evolvability and ease of study (see ‘pleiotropy’, Table 1). For
example, many proteins form complexes with other proteins or bind to DNA or RNA in
order to carry out their function. These interactions limit the mutations that a given gene
can accumulate before it is non-functional (Papakostas et al., 2014). Additionally, many
genes are pleiotropic and may influence several, even quite different biological processes
by being expressed at different times, in different tissues or by forming complexes with
different protein partners. Linkage and recombination can also affect the evolvability of
genes (Table 1). Genes that are in close proximity on a chromosome will likely be inherited
together, thus linked allelic combinations of these genes will tend to be inherited together.
In some cases linked loci can even become fixed, as when a chromosomal inversion occurs,
creating a ‘supergene’ with diverse effects on the breeding phenotype (Kupper et al., 2016;
Lamichhaney et al., 2016; Tuttle et al., 2016). Clearly, a better understanding of genome
processes as well as how genes interact and are expressed in both sexes will aid in the
understanding of sexually selected traits and sexual antagonistic genes.

4. Sexual selection and sexual conflict as drivers, or obstacles, of
speciation
Sexual selection is an important evolutionary force in the context of speciation (e.g.,
Kraaijeveld, Kraaijeveld-Smit & Maan, 2011; Panhuis et al., 2001; Ritchie, 2007; Schaefer
& Ruxton, 2015). Traditionally, research in this field has focused on the role of sexual
selection during early phases of population divergence, because divergence in display traits
and preferences can quickly cause pre-zygotic isolation (Coyne & Orr, 2004). This focus
is not surprising given the huge variation we observe in sexually selected traits among
relatively newly formed, closely related species. However, sexual selection through mate
choice is unlikely to lead to speciation by itself (Ritchie, 2007; Servedio & Burger, 2014), an
argument that has resulted in a growing interest in understanding sexual selection in the
broader context of ecological speciation (Martin & Mendelson, 2014; Scordato et al., 2014).

There is also a growing awareness that cryptic forms of female choice, i.e., post-
mating/post-spawning processes resulting in conspecific sperm precedence, may be
important sources of reproductive isolation (Howard, 1999; Palumbi, 2009; Swanson
& Vacquier, 2002; Van Doorn, Luttikhuizen & Weissing, 2001). In addition, male-male
competition (Qvarnström, Vallin & Rudh, 2012; Tinghitella et al., 2018) and sexual conflict
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(reviewed by Parker, 2006) are becoming increasingly recognized as important mechanisms
of speciation. Below, we discuss these novel lines of progress in our understanding of the
role of sexual selection in speciation. Additionally, we provide some suggestions for use of
genomic methods in testing current controversies in the field.

4a. Mate choice and ecological speciation
The vast majority of theoretical models evaluating the role of sexual selection in speciation
are based on Fisherian processes of sexual selection (Lande, 1981). Why has the interest
in benefit-driven mate choice been so slow in being transferred from research on sexual
selection within populations to research on the role of sexual selection in speciation
processes? At least one identified potential ‘‘problem’’ with benefit-driven mate choice in
the context of speciation is associated with the unidirectional nature of choice. Disruptive
selection is considered to be a prerequisite for population divergence under gene flow but
disruptive selection on benefit-driven mate choice is generally not expected. Moreover,
while differences in natural selection experienced by geographically separated populations
may quickly lead to divergence in male display traits (Maan & Seehausen, 2011), mating
preferences (Table 1) may not change in a similar manner. For example, when a long bird
tail signals some type of quality and males have evolved shorter tails in one population due
to high local costs (e.g., strong predation pressures), females from that population would
not be expected to prefer males with relatively short tails. Females from this population of
short-tailed males should instead be expected to prefer to mate with males from long-tailed
populations whenever they have a chance to do so.

There are several possible solutions to this ‘‘problem’’. First, femalemate preferencesmay
actually experience corresponding natural selection pressures as male display traits. Segami
Marzal et al. (2017) found that cryptic female poison frogs experienced elevated predation
risk when associating with an aposematic partner. Hence, predation may act directly on
female choice favoring the evolution of preferences for less conspicuous males. Second,
female mate preferences may be exposed to other environment-specific natural selection
pressures that target their sensory system, resulting in population specific mate choice
targets (‘sensory drive’, Table 1, Boughman, 2002; Endler, 1992). In short, if a sensory trait,
for example vision, is locally adapted and also involved in finding mates or assessing their
quality, this functional linkage may result in divergence in male display traits (Boughman,
2002; see also ‘Receiver mechanisms and biases that shape signal design’). Moreover, Schluter
& Price (1993) suggested that several male traits may reveal the same type of benefits
but the perception of these traits may differ between environments resulting in different
traits being the prime targets for benefit-driven mate choice in different environments.
Empirical evidence suggest multiple effects of female sensory traits causing divergence in
male courtship traits (Boughman, 2001; Boughman, 2002; Fuller & Noa, 2010; Seehausen
et al., 2008). Finally, a third possible solution is that mate preferences remain the same
but assortative mating between populations that are adapted to different environments is
still possible (Kopp et al., 2018). For example, immigrant males that lack genes underlying
local adaptation are unable to develop large ornaments, such as bright coloration, enabling
females to discriminate against them (Van Doorn, Edelaar & Weissing, 2009). Males that
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are well adapted to the local environment will therefore be more attractive to females, and
offer direct benefits (e.g., territory quality) or genes that are related to local adaptation
(reviewed in Safran et al., 2013). Thus, under certain prerequisites, genes that contribute
to adaptation will spread in the population through both natural and sexual selection.
In some systems, however, rare immigrants to a population appear to achieve enhanced
survival and lower parasite loads compared to residents (Bolnick & Stutz, 2017). In ‘How
does sexual conflict impact speciation processes? ’ below, we discuss how genomic approaches
can be used to test the prerequisites for sexual and natural selection to jointly promote
speciation.

4b. Cryptic female choice and post-copulatory reproductive isolation
Choice mechanisms directly based on conspecific sperm traits rather than species-specific
secondary sexual traits are known from external fertilizers, like abalones, sea urchins
and oysters (Vacquier & Swanson, 2011) and fish (Yeates et al., 2013). Post-copulatory
reproductive barriers are much less known in internal fertilizers, at least partly because
of the difficulty of studying what goes on within the female reproductive tract (Birkhead
& Brillard, 2007). However, there is increasing evidence for such ‘‘cryptic’’ mechanisms
of female choice, where heterospecific sperm is discriminated against also in internally
fertilizing animals, like insects (Coyne & Orr, 2004) and non-passerine birds (Birkhead &
Brillard, 2007).

Although pre-copulatory mate choice based on plumage and song traits is well known
in passerine birds, little attention has been paid to possible post-copulatory reproductive
barriers. Passerine sperm morphology is known to evolve rapidly (e.g., Hogner et al., 2013)
and the rate of evolution is positively related to the risk of sperm competition (Rowe
et al., 2015). One emerging question is therefore whether sperm divergence could be
causally involved in reproductive isolation between incipient species pairs with sperm
competition, through differential fertilization success of conspecific over heterospecific
sperm. At the mechanistic level, this could work via co-evolution between sperm length
and sperm storage tubule length (Briskie & Montgomerie, 1992). In other words, sperm of a
heterospecific male might be selected against because they are not the right size to fit in the
sperm storage tubules. Alternatively, reproductive proteins in seminal- and ovarian fluid,
which are known to evolve rapidly in other taxa (Turner & Hoekstra, 2008, but see Rowe
et al., 2018), may be the key molecules involved in post-copulatory selection mechanisms
also in passerines.

A recent study of two sympatric Ficedula flycatchers, suggests that female pied flycatchers
(F. hypoleuca) that are constrained to pair with heterospecific males, are more prone to
perform extra-pair copulations with conspecific males and able to exert cryptic choice
in favour of their sperm, thereby reducing the risk of producing unfit hybrid offspring
(Cramer et al., 2016a). By in vitro testing of sperm velocity from males of each of the two
species against cloacal fluid collected from females of both species, the authors found
an asymmetric pattern: sperm from collared flycatcher (F. albicollis) males experienced a
higher velocity reduction in pied flycatcher female fluid than in collared flycatcher fluid,
but not vice versa. Furthermore, this effect was strongest for pied flycatcher females with

Lindsay et al. (2019), PeerJ, DOI 10.7717/peerj.7988 26/54

https://peerj.com
http://dx.doi.org/10.7717/peerj.7988


a high likelihood of previous exposure to sperm of collared flycatcher males. Such effects
were not seen in studies of four other, non-hybridizing passerine species pairs, with a range
of divergences in genetic distance and sperm morphology (Cramer et al., 2014; Cramer et
al., 2016b), suggesting that selection against hybridization may have favored the evolution
of this cryptic barrier in flycatchers.

Future studies, targeting the molecular mechanisms underlying sperm performance
within conspecific and heterospecific female reproductive environments, will shed novel
light on the type of selection acting at this cryptic level of female choice and the relative
importance of pre- and post-copulatory mate choice in speciation processes.

4c. Male–male competition and niche segregation
When males compete over females or resources needed to attract females, they often bias
their aggression towards themost commonmale phenotype in the population (Qvarnström,
Vallin & Rudh, 2012; Tinghitella et al., 2018). This means that both the invasion of, for
example, new color morphs and stable polymorphism within populations become much
more likely than in cases when mate choice acts as the main mechanism of sexual selection
(reviewed inQvarnström, Vallin & Rudh, 2012; Tinghitella et al., 2018). Onemay argue that
such negative frequency-dependent selection driven by male aggression could promote
divergence in e.g., color morphs with little divergence in niche use. In agreement with this
line of reasoning, Seehausen & Schluter (2004) found that sibling species of cichlid fishes in
Lake Victoria were ecologically similar but markedly different in coloration. Closely related
species of cichlids with similar color were also less likely to occupy the same habitat patches
(Seehausen & Schluter, 2004). Should we then expect the diversifying aspects of male-male
competition to be unrelated to ecological speciation?

There are at least three main reasons to expect that divergence in sexually selected traits
used in male contest competition may often be associated with divergence in niche use.
First, dominance hierarchies are often asymmetric between color morphs and population
divergence in traits used in combat (e.g., horns, large bodies) is often directly associated
with dominance strategies and thereby access to other resources than females (Forsgren,
Kvarnemo & Lindström, 1996; Qvarnström, Vallin & Rudh, 2012). We therefore predict
population divergence in sexually selected traits used in male-male competition and
population divergence in niche use to often be associated. Second, at secondary contact
between young species, selection against heterospecific aggression may contribute to
increased niche segregation. Ongoing habitat segregation was for example observed in a
recently formed hybrid zone between collared and pied flycatchers on the Swedish island,
Öland. An asymmetry in male contest competition ability over nesting sites needed to
attract females resulted in male pied flycatchers being displaced from deciduous forests
patches into less preferred mixed forest habitats (Vallin et al., 2012). As a consequence of
this habitat segregation, the access to resources used to feed nestlings declined dramatically
in breeding territories used by pied flycatchers but the risk of hybridizing with collared
flycatchers also declined (Rybinski et al., 2016). Thus, habitat segregation not only led to
reduced aggressive interactions between the two flycatcher species, but also to reproductive
isolation. Third, environmental effects on the efficiency of different signaling traits may
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not only affect which traits become targets of female choice by being relatively more
detectable or reliable (Schluter & Price, 1993) but also which traits become targets of
male competition. Lackey & Boughman (2013) compared limnetic and benthic species
of threespine stickleback fish across different habitats. They found that mixed habitats
favored two trait combinations and thereby likely divergence and reproductive isolation
while homogenous open habitats favored only one trait combination and thereby likely
hindered trait divergence and reproductive isolation (Lackey & Boughman, 2013).

4d. How does sexual conflict impact speciation processes?
In contrast to sexual selection, less research has targeted the consequences of sexual conflict
on speciation. Several approaches concur with the notion that sexual conflict will also
catalyse speciation, others suggest the reverse (see reviews by Gavrilets, 2014; Parker, 2006).
The hypothesis that selection favours restriction of gene flow when hybrids between
ecotypes have a fitness disadvantage relies on the tacit assumption that female interests will
prevail in mating decisions. However, unless the hybrid disadvantage is sufficiently great,
it will be in male interest to mate (Kokko & Ots, 2006; Parker, 1974; Parker, 1979; Waser,
Austad & Keane, 1986); a wide parameter zone exists over which sexual conflict applies
and in this zone selection on females acts as a force favouring speciation by restricting gene
flow, but selection on males acts as a force resisting speciation by promoting gene flow.
While some empirical studies suggest that sexual conflict promotes speciation, others do
not (Gavrilets, 2014; Plesnar-Bielak et al., 2013).

Extending this argument, Parker & Partridge (1998) suggested that under sexual conflict,
‘female win’ resolutions in given taxa may result in high species numbers and low genetic
variation per species, whereas ‘male win’ resolutions may result in taxa with low species
numbers and high genetic variation per species. Which solution prevails depends on
the value of winning (generally greater for males) and ‘power’, a measure related to the
fitness costs of overcoming the current defense by the opposite sex (costs for females
of preventing mating may often be less than the costs for males of imposing matings).
Similarly, Magurran (1998) proposed that sexual conflict and male interests may be key
to explaining the absence of speciation in Trinidadian guppies, Poecilia reticulata, where
population differentiation is nevertheless high and female choice appears to reinforce
divergence. Sneak mating by males is common, and may generate sufficient gene flow
to prevent reproductive isolation. Early comparative attempts to establish a link between
speciation rate and possible proxies for sexual conflict (sexual size dimorphism, polyandry)
in mammals, butterflies and spiders were unsuccessful (Gage et al., 2002), but recent work
on shorebirds also gives some support to the notion that male interests (measured in terms
polygamy) can act against speciation (D’Urban Jackson et al., 2017).

The role of sexual conflict in speciation certainly deserves further investigation. An
interesting complication is that if two subpopulations, A and B, have diverged sufficiently,
the fitness consequences to males and females of A and B can become asymmetric, e.g.,
the relative hybrid disadvantage in (i) male A ×female B matings may differ from that in
(ii) female A x male B matings. Additionally, the balance for the sexes between the fitness
value of winning (i.e., between mating or not mating) and ‘power’ (the fitness cost of
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overcoming defences) may differ in these two possible pairings (Parker, 1979; Parker &
Partridge, 1998). Such asymmetries could hypothetically lead to a variety of situations: for
example, sexual conflict could occur in case (i) but not in case (ii), so that (depending
on the ‘value of winning value’/‘power’ balance) selection could favour speciation in one
population but not the other, a form of ‘‘speciation conflict’’.

4e. Genomic properties of speciation through sexual selection
Genomic approaches may help to bridge several important gaps in our current
understanding of the role of sexual selection in speciation. Detailed information about the
genomics underlying sexually selected phenotypes can be used to test key assumptions of
theoretical models on sexual selection (Wilkinson et al., 2015, see also ‘Genetic architecture
of sexual selection’ above) and then be placed into the context of speciation. Because,
as mentioned above, divergent sexual selection alone rarely causes speciation (Ritchie,
2007), one particularly interesting aspect of ‘the context of speciation’ deals with how
traits involved in several different aspects of reproductive isolation can remain in linkage
disequilibrium under gene flow (Butlin & Smadja, 2018; Coyne & Orr, 2004; Seehausen
et al., 2014; Table 1). Hybridization can easily break up crucial trait-combinations
through recombination and segregation (Table 1, Felsenstein, 1981). The completion
of speciation under gene flow is therefore considered to be more likely when traits involved
in reproductive isolation have dual functions (Gavrilets, 2004; Slatkin, 1982; Smadja &
Butlin, 2011). The completion of speciation occurs because, when a single trait is under
divergent natural selection and also involved in mate choice, the association between these
two functions cannot be easily broken by recombination. There are numerous examples
of putative multiple effect traits (‘magic’ traits) involved in population divergence, many
focusing on the signaling side of sexual selection (Servedio et al., 2011; Smadja & Butlin,
2011). One of the best examples is from Heliconius butterflies, where the mimicry pattern
also has a signaling function when acquiring mates (Kronforst et al., 2006; Merrill et al.,
2011). However, mate preferences can also function as ‘magic’ traits with dual functions.
For example, in the context of sensory drive speciation (Table 1) in teleost fishes. In short,
if a sensory trait, for example vision, is locally adapted and also involved in finding mates or
assessing their quality, this means a functional linkage between niche use and mate choice.
Given the difficulties in unravelling the genetic background of especially mate choice, these
systems could be good candidates for studies of genetic architecture of mate preferences
(Table 1). In Pundamilia cichlid fish and Heliconius butterflies, where gene flow is evident
and multiple effect traits have been invoked to be instrumental in the speciation process,
empirical results are consistent with few genes having a major effect on female assortative
mating (Haesler & Seehausen, 2005; Kronforst et al., 2006; Merrill et al., 2011; Svensson et
al., 2017).

When several different traits contribute to reproductive isolation, linkage disequilibrium
among the underlying loci may shelter against the homogenizing effects of gene flow.
Barton (1983) introduced the term ‘coupling’ to refer to a process where buildup of linkage
disequilibrium between loci under divergent selection promotes speciation (Flaxman et al.,
2014). Such coupling occurs because each locus with an effect on reproductive isolation is
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then not only influenced directly by selection acting on itself but also by indirect selection
acting on the other coupled loci leading to stronger overall isolation. Much scientific
attention has been directed to possible genetic coupling by physical linkage between
isolation loci through proximity on particular chromosomes (e.g., sex chromosomes
Qvarnstrom & Bailey, 2009), particular parts of chromosomes with low recombination
rates (e.g., centromeres Ortiz-Barrientos, Engelstadter & Rieseberg, 2016) or within recently
formed chromosomal rearrangements (Noor et al., 2001). Empirical studies suggest that
differentiated loci are indeed enriched in genomic regions with reduced recombination
(Wolf & Ellegren, 2017) but such patterns alone need to be interpreted with caution.
Genomic studies need to be tightly intertwined with knowledge about phenotypic effects to
reveal which differentiated loci that have effects on reproductive isolation as differentiation
per se does not impose a key function in the speciation process. To achieve this goal
several different methods need to be combined. First, ecological and behavioral studied
are needed to reveal the function of phenotypic traits and their role in niche use, mating
and most importantly their barrier effects - their role in causing reproductive isolation.
Second, the genetic variants underlying these traits need to be revealed with genome wide
association studies or similar (GWAS, Rockman, 2012). Finally, Butlin & Smadja (2018)
recently suggested that more scientific attention also needs to be directed towards the
coupling processes themselves and that the term ‘coupling’ should be extended to include
any process that generates coincidence of barrier effects. Reaching these three goals is a
challenging empirical undertaking but would reveal key information about the speciation
process, including the role of sexual selection in driving reproductive isolation.

CONCLUSIONS
Our survey of emerging questions in sexual selection, while necessarily incomplete, shows
that the field is on the cusp of a major revolution. In many ways the theoretical framework
for the study of sexual selection and sexual conflict is robust, having been refined since
the late 1960s. What is needed now are bold empirical attempts to understand the diverse
molecular and ecological mechanisms that couldmodulate the outcomes of sexual selection
and sexual conflict.

One obvious frontier of sexual selection resides in increased understanding of the
molecular genetic and physiological mechanisms of traits subjected to or contributing
to sexual selection and sexual conflict, an understanding that next-generation molecular
methods will help achieve. Although interesting in its own right, it is perhaps even more
important what these mechanisms imply about the history, constraints and evolvability
of traits, allowing several outstanding issues in sexual selection and sexual conflict to
be addressed. A molecular understanding of sexually selected traits will help the field
discriminate between alternative hypotheses for the maintenance of variability in those
traits, for example, whether they have evolved via good genes mechanisms or by more
arbitrary or neutral processes (Prum, 2010; Prum, 2017). A good example is the recent
elucidation of the genes involved with carotenoid metabolism in birds (Lopes et al., 2016;
Mundy et al., 2016; Toews, Hofmeister & Taylor, 2017). With a clear understanding of the
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genes that process ingested carotenoids, we can gain better estimates of the true costs and
constraints on those traits, which in turn can help predict their evolutionary trajectories
within and between species.

It would, however, be short-sighted to conclude that molecular mechanisms alone will
bring a holistic understanding of sexual selection and conflict. Genetic mechanisms only
havemeaning when appropriately placed in the context of the natural history and ecological
and social constraints that characterize different systems exhibiting sexual selection. Recent
examples show how molecular methods achieve their biggest impact when deployed in the
context of large-scale ecological and behavioral studies of naturally occurring variation in
the wild (e.g., Bosse et al., 2017). And although an understanding of the historical origins
of traits, i.e., ancestral constraints and exaptations, is (or should be) the very essence of
modern evolutionary biology, there is still a striking lack of ‘tree-thinking’ that would
facilitate understanding such constraints in biology in general, and sexual selection in
particular (Price, Clapp & Omland, 2011). This trend is particularly true in the study of
the many micro- and macroevolutionary consequences of sexual selection (but see Prum,
1997).

Advances at the interface of molecular, ecological, behavioral and theoretical research
will require collaborations between experts in divergent areas, a goal that we hope our
workshop in Gothenburg has fostered.
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