105 research outputs found
Rotational Study Of Ambiguous Taxonomic Type Asteroids
Researchers have been categorizing asteroids by color for decades in an attempt to better understand asteroid composition and potential links to the meteorite population. However, only recently through large data collection surveys like the Sloan Digital Sky Survey (SDSS) has the asteroid population as a whole been studied. This research will look at a subset of asteroids with the highest reflectivity differences as reported by Carvano et al. (2010) in order to answer the question: Can visible wavelength ambiguous taxonomic asteroid types be an indicator of a non-homogeneous surface?
This research studied asteroid 2453 (Wabash) in great detailed with visible spectrophotometry and near-infrared spectra. The results show that although a minor non-homogeneous surface was identified the non-homogenous surface is the not the primary source of the SDSS detected taxonomic variation
A search for rapidly pulsating hot subdwarf stars in the GALEX survey
NASA's Galaxy Evolution Explorer (GALEX) provided near- and far-UV
observations for approximately 77 percent of the sky over a ten-year period;
however, the data reduction pipeline initially only released single NUV and FUV
images to the community. The recently released Python module gPhoton changes
this, allowing calibrated time-series aperture photometry to be extracted
easily from the raw GALEX data set. Here we use gPhoton to generate light
curves for all hot subdwarf B (sdB) stars that were observed by GALEX, with the
intention of identifying short-period, p-mode pulsations. We find that the
spacecraft's short visit durations, uneven gaps between visits, and dither
pattern make the detection of hot subdwarf pulsations difficult. Nonetheless,
we detect UV variations in four previously known pulsating targets and report
their UV pulsation amplitudes and frequencies. Additionally, we find that
several other sdB targets not previously known to vary show promising signals
in their periodograms. Using optical follow-up photometry with the Skynet
Robotic Telescope Network, we confirm p-mode pulsations in one of these
targets, LAMOST J082517.99+113106.3, and report it as the most recent addition
to the sdBVr class of variable stars.Comment: 11 Pages, 8 Figures, Accepted for publication in the Astrophysical
Journa
Physical Characterization of Active Asteroid (6478) Gault
Main belt asteroid (6478) Gault has been dynamically linked with two
overlapping asteroid families: Phocaea, dominated by S-type asteroids, and
Tamara, dominated by low-albedo C-types. This object has recently become an
interesting case for study, after images obtained in late 2018 revealed that it
was active and displaying a comet-like tail. Previous authors have proposed
that the most likely scenarios to explain the observed activity on Gault were
rotational excitation or merger of near-contact binaries. Here we use new
photometric and spectroscopic data of Gault to determine its physical and
compositional properties. Lightcurves derived from the photometric data showed
little variation over three nights of observations, which prevented us from
determining the rotation period of the asteroid. Using WISE observations of
Gault and the near-Earth Asteroid Thermal Model (NEATM) we determined that this
asteroid has a diameter 6 km. NIR spectroscopic data obtained with the
Infrared Telescope Facility (IRTF) showed a spectrum similar to that of
S-complex asteroids, and a surface composition consistent with H chondrite
meteorites. These results favor a compositional affinity between Gault and
asteroid (25) Phocaea, and rules out a compositional link with the Tamara
family. From the spectroscopic data we found no evidence of fresh material that
could have been exposed during the outburst episodes.Comment: 9 pages, 4 figures, accepted for publication in ApJ
Interaction of urea with frequency and amount of distillers grains supplementation for growing steers on a high forage diet
Two studies were conducted to determine interactions of urea inclusion to a dried distillers grains plus solubles (DDGS; 29.4% crude protein, 5.48% ether extract) supplement fed at two amounts and two frequencies to steers on a high forage diet. In Exp. 1, 120 (247 kg; SD = 20) steers were fed individually for 84 d. Steers received ad libitum grass hay (6.8% crude protein) and one of eight treatments. Treatment design was a 2 × 2 × 2 factorial. Supplement was fed daily or three times per week, amount of supplement fed was 6.36 kg dry matter (DM)/week [0.37% body weight (BW); LO] or 12.73 kg DM/week (0.74% BW; HI) and contained either no urea or 1.3% urea on a DM basis. Steer BW was measured at the start and end of the trial and hay DM intake (DMI) was measured weekly. In Exp. 2, ruminally cannulated steers (310 kg; SD = 25) were used in a row-column design with eight steers and six 14-d periods. Treatments assigned were the same as Exp. 1, except that supplement was fed at 0.4% of BW (LO) or 0.8% of BW (HI) and supplement was fed either daily (DY) or every other day (ALT). Hay DMI, rumen ammonia-N, rumen pH, in situ neutral detergent fiber (NDF) disappearance, and rumination were measured. In Exp. 1, average daily gain (ADG) was affected by amount of supplement with steers on HI gaining 0.30 kg/d more (P \u3c 0.01) than LO. Hay DMI was reduced by increased amount of supplement (0.39 kg/d; P \u3c 0.01) and by decreased frequency of supplementation (0.54 kg/d; P \u3c 0.01). In Exp. 2, hay DMI was also reduced due to increased amount of supplement and decreased frequency of supplementation (P \u3c 0.01). Rumen pH was decreased on the day of supplement feeding for steers on ALT (P \u3c 0.01) and reduced for steers fed HI vs. LO. There was no difference in NDF digestibility between DY and ALT (P \u3e 0.05). For ALT steers, there was reduction (P \u3c 0.01) in in situ NDF disappearance for the HI compared to LO amount of supplementation on the day of supplementation. Infrequent supplementation of DDGS results in no difference in ADG but decreased hay DMI compared to daily supplementation. Urea had no effect on digestion or ADG, suggesting rumen degradable protein was not deficient when supplementing DDGS. There is little change in rumen fermentation parameters between frequency of supplement feeding, indicating that forage digestion is not impacted by supplementation frequency. Dried distillers grains can be supplemented infrequently without a reduction in animal performance
Optical Time-Series Photometry of the Symbiotic Nova V1835 Aquilae
We present time-series CCD photometry in the passbands of the recently
identified symbiotic nova V1835 Aquilae (NSV 11749) over an interval of 5.1
years with 7-14 day cadence, observed during its quiescence. We find slow light
variations with a range of 0.9 mag in and 0.3 mag in .
Analysis of these data show strong periodicity at days, which we
interpret to be the system's orbital period. A dip in the otherwise-sinusoidal
phased light curve suggests a weak ellipsoidal effect due to tidal distortion
of the giant star, which in turn opens the possibility that V1835 Aql transfers
some of its mass to the hot component via Roche lobe overflow rather than via a
stellar wind. We also find evidence that V1835 Aql is an S-type symbiotic star,
relatively free of circumstellar dust, and include it among the nuclear burning
group of symbiotics. Finally, we provide photometry, periods, and light curve
classifications for 22 variable stars in the field around V1835 Aql, about half
of which are newly identified.Comment: Main Paper: 28 pages, 5 figures, 5 tables. Supplement: 15 pages, 4
figures, 1 table. To be published in Publications of the Astronomical Society
of the Pacifi
Accelerated evolution of SARS-CoV-2 in free-ranging white-tailed deer
The zoonotic origin of the COVID-19 pandemic virus highlights the need to fill the vast gaps in our knowledge of SARS-CoV-2 ecology and evolution in non-human hosts. Here, we detected that SARS-CoV-2 was introduced from humans into white-tailed deer more than 30 times in Ohio, USA during November 2021-March 2022. Subsequently, deer-to-deer transmission persisted for 2–8 months, disseminating across hundreds of kilometers. Newly developed Bayesian phylogenetic methods quantified how SARS-CoV-2 evolution is not only three-times faster in white-tailed deer compared to the rate observed in humans but also driven by different mutational biases and selection pressures. The long-term effect of this accelerated evolutionary rate remains to be seen as no critical phenotypic changes were observed in our animal models using white-tailed deer origin viruses. Still, SARS-CoV-2 has transmitted in white-tailed deer populations for a relatively short duration, and the risk of future changes may have serious consequences for humans and livestock
CMB-S4: Forecasting Constraints on Primordial Gravitational Waves
CMB-S4---the next-generation ground-based cosmic microwave background (CMB)
experiment---is set to significantly advance the sensitivity of CMB
measurements and enhance our understanding of the origin and evolution of the
Universe, from the highest energies at the dawn of time through the growth of
structure to the present day. Among the science cases pursued with CMB-S4, the
quest for detecting primordial gravitational waves is a central driver of the
experimental design. This work details the development of a forecasting
framework that includes a power-spectrum-based semi-analytic projection tool,
targeted explicitly towards optimizing constraints on the tensor-to-scalar
ratio, , in the presence of Galactic foregrounds and gravitational lensing
of the CMB. This framework is unique in its direct use of information from the
achieved performance of current Stage 2--3 CMB experiments to robustly forecast
the science reach of upcoming CMB-polarization endeavors. The methodology
allows for rapid iteration over experimental configurations and offers a
flexible way to optimize the design of future experiments given a desired
scientific goal. To form a closed-loop process, we couple this semi-analytic
tool with map-based validation studies, which allow for the injection of
additional complexity and verification of our forecasts with several
independent analysis methods. We document multiple rounds of forecasts for
CMB-S4 using this process and the resulting establishment of the current
reference design of the primordial gravitational-wave component of the Stage-4
experiment, optimized to achieve our science goals of detecting primordial
gravitational waves for at greater than , or, in the
absence of a detection, of reaching an upper limit of at CL.Comment: 24 pages, 8 figures, 9 tables, submitted to ApJ. arXiv admin note:
text overlap with arXiv:1907.0447
Genetic effects on gene expression across human tissues
Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of diseas
The genetic architecture of the human cerebral cortex
The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder
- …