267 research outputs found

    The changes in health service utilisation in Malawi during the COVID-19 pandemic

    Get PDF
    INTRODUCTION: The COVID-19 pandemic and the restriction policies implemented by the Government of Malawi may have disrupted routine health service utilisation. We aimed to find evidence for such disruptions and quantify any changes by service type and level of health care. METHODS: We extracted nationwide routine health service usage data for 2015-2021 from the electronic health information management systems in Malawi. Two datasets were prepared: unadjusted and adjusted; for the latter, unreported monthly data entries for a facility were filled in through systematic rules based on reported mean values of that facility or facility type and considering both reporting rates and comparability with published data. Using statistical descriptive methods, we first described the patterns of service utilisation in pre-pandemic years (2015-2019). We then tested for evidence of departures from this routine pattern, i.e., service volume delivered being below recent average by more than two standard deviations was viewed as a substantial reduction, and calculated the cumulative net differences of service volume during the pandemic period (2020-2021), in aggregate and within each specific facility. RESULTS: Evidence of disruptions were found: from April 2020 to December 2021, services delivered of several types were reduced across primary and secondary levels of care-including inpatient care (-20.03% less total interactions in that period compared to the recent average), immunisation (-17.61%), malnutrition treatment (-34.5%), accidents and emergency services (-16.03%), HIV (human immunodeficiency viruses) tests (-27.34%), antiretroviral therapy (ART) initiations for adults (-33.52%), and ART treatment for paediatrics (-41.32%). Reductions of service volume were greatest in the first wave of the pandemic during April-August 2020, and whereas some service types rebounded quickly (e.g., outpatient visits from -17.7% to +3.23%), many others persisted at lower level through 2021 (e.g., under-five malnutrition treatment from -15.24% to -42.23%). The total reduced service volume between April 2020 and December 2021 was 8 066 956 (-10.23%), equating to 444 units per 1000 persons. CONCLUSION: We have found substantial evidence for reductions in health service delivered in Malawi during the COVID-19 pandemic which may have potential health consequences, the effect of which should inform how decisions are taken in the future to maximise the resilience of healthcare system during similar events

    The diploid genome sequence of an Asian individual

    Get PDF
    Here we present the first diploid genome sequence of an Asian individual. The genome was sequenced to 36-fold average coverage using massively parallel sequencing technology. We aligned the short reads onto the NCBI human reference genome to 99.97% coverage, and guided by the reference genome, we used uniquely mapped reads to assemble a high-quality consensus sequence for 92% of the Asian individual's genome. We identified approximately 3 million single-nucleotide polymorphisms (SNPs) inside this region, of which 13.6% were not in the dbSNP database. Genotyping analysis showed that SNP identification had high accuracy and consistency, indicating the high sequence quality of this assembly. We also carried out heterozygote phasing and haplotype prediction against HapMap CHB and JPT haplotypes (Chinese and Japanese, respectively), sequence comparison with the two available individual genomes (J. D. Watson and J. C. Venter), and structural variation identification. These variations were considered for their potential biological impact. Our sequence data and analyses demonstrate the potential usefulness of next-generation sequencing technologies for personal genomics

    Quantification of myocardial blood flow with 82Rb positron emission tomography: clinical validation with 15O-water

    Get PDF
    PURPOSE: Quantification of myocardial blood flow (MBF) with generator-produced (82)Rb is an attractive alternative for centres without an on-site cyclotron. Our aim was to validate (82)Rb-measured MBF in relation to that measured using (15)O-water, as a tracer 100% of which can be extracted from the circulation even at high flow rates, in healthy control subject and patients with mild coronary artery disease (CAD). METHODS: MBF was measured at rest and during adenosine-induced hyperaemia with (82)Rb and (15)O-water PET in 33 participants (22 control subjects, aged 30 ± 13 years; 11 CAD patients without transmural infarction, aged 60 ± 13 years). A one-tissue compartment (82)Rb model with ventricular spillover correction was used. The (82)Rb flow-dependent extraction rate was derived from (15)O-water measurements in a subset of 11 control subjects. Myocardial flow reserve (MFR) was defined as the hyperaemic/rest MBF. Pearson's correlation r, Bland-Altman 95% limits of agreement (LoA), and Lin's concordance correlation ρ (c) (measuring both precision and accuracy) were used. RESULTS: Over the entire MBF range (0.66-4.7 ml/min/g), concordance was excellent for MBF (r = 0.90, [(82)Rb-(15)O-water] mean difference ± SD = 0.04 ± 0.66 ml/min/g, LoA = -1.26 to 1.33 ml/min/g, ρ(c) = 0.88) and MFR (range 1.79-5.81, r = 0.83, mean difference = 0.14 ± 0.58, LoA = -0.99 to 1.28, ρ(c) = 0.82). Hyperaemic MBF was reduced in CAD patients compared with the subset of 11 control subjects (2.53 ± 0.74 vs. 3.62 ± 0.68 ml/min/g, p = 0.002, for (15)O-water; 2.53 ± 1.01 vs. 3.82 ± 1.21 ml/min/g, p = 0.013, for (82)Rb) and this was paralleled by a lower MFR (2.65 ± 0.62 vs. 3.79 ± 0.98, p = 0.004, for (15)O-water; 2.85 ± 0.91 vs. 3.88 ± 0.91, p = 0.012, for (82)Rb). Myocardial perfusion was homogeneous in 1,114 of 1,122 segments (99.3%) and there were no differences in MBF among the coronary artery territories (p > 0.31). CONCLUSION: Quantification of MBF with (82)Rb with a newly derived correction for the nonlinear extraction function was validated against MBF measured using (15)O-water in control subjects and patients with mild CAD, where it was found to be accurate at high flow rates. (82)Rb-derived MBF estimates seem robust for clinical research, advancing a step further towards its implementation in clinical routine

    The changes in health service utilisation in Malawi during the COVID-19 pandemic

    Get PDF
    Introduction The COVID-19 pandemic and the restriction policies implemented by the Government of Malawi may have disrupted routine health service utilisation. We aimed to find evidence for such disruptions and quantify any changes by service type and level of health care. Methods We extracted nationwide routine health service usage data for 2015–2021 from the electronic health information management systems in Malawi. Two datasets were prepared: unadjusted and adjusted; for the latter, unreported monthly data entries for a facility were filled in through systematic rules based on reported mean values of that facility or facility type and considering both reporting rates and comparability with published data. Using statistical descriptive methods, we first described the patterns of service utilisation in pre-pandemic years (2015–2019). We then tested for evidence of departures from this routine pattern, i.e., service volume delivered being below recent average by more than two standard deviations was viewed as a substantial reduction, and calculated the cumulative net differences of service volume during the pandemic period (2020–2021), in aggregate and within each specific facility. Results Evidence of disruptions were found: from April 2020 to December 2021, services delivered of several types were reduced across primary and secondary levels of care–including inpatient care (-20.03% less total interactions in that period compared to the recent average), immunisation (-17.61%), malnutrition treatment (-34.5%), accidents and emergency services (-16.03%), HIV (human immunodeficiency viruses) tests (-27.34%), antiretroviral therapy (ART) initiations for adults (-33.52%), and ART treatment for paediatrics (-41.32%). Reductions of service volume were greatest in the first wave of the pandemic during April-August 2020, and whereas some service types rebounded quickly (e.g., outpatient visits from -17.7% to +3.23%), many others persisted at lower level through 2021 (e.g., under-five malnutrition treatment from -15.24% to -42.23%). The total reduced service volume between April 2020 and December 2021 was 8 066 956 (-10.23%), equating to 444 units per 1000 persons. Conclusion We have found substantial evidence for reductions in health service delivered in Malawi during the COVID-19 pandemic which may have potential health consequences, the effect of which should inform how decisions are taken in the future to maximise the resilience of healthcare system during similar events

    Assessing the effect of health system resources on HIV and tuberculosis programmes in Malawi:a modelling study

    Get PDF
    BACKGROUND: Malawi is progressing towards UNAIDS and WHO End TB Strategy targets to eliminate HIV/AIDS and tuberculosis. We aimed to assess the prospective effect of achieving these goals on the health and health system of the country and the influence of consumable constraints. METHODS: In this modelling study, we used the Thanzi la Onse (Health for All) model, which is an individual-based multi-disease simulation model that simulates HIV and tuberculosis transmission, alongside other diseases (eg, malaria, non-communicable diseases, and maternal diseases), and gates access to essential medicines according to empirical estimates of availability. The model integrates dynamic disease modelling with health system engagement behaviour, health system use, and capabilities (ie, personnel and consumables). We used 2018 data on the availability of HIV and tuberculosis consumables (for testing, treatment, and prevention) across all facility levels of the country to model three scenarios of HIV and tuberculosis programme scale-up from Jan 1, 2023, to Dec 31, 2033: a baseline scenario, when coverage remains static using existing consumable constraints; a constrained scenario, in which prioritised interventions are scaled up with fixed consumable constraints; and an unconstrained scenario, in which prioritised interventions are scaled up with maximum availability of all consumables related to HIV and tuberculosis care. FINDINGS: With uninterrupted medical supplies, in Malawi, we projected HIV and tuberculosis incidence to decrease to 26 (95% uncertainty interval [UI] 19-35) cases and 55 (23-74) cases per 100 000 person-years by 2033 (from 152 [98-195] cases and 123 [99-160] cases per 100 000 person-years in 2023), respectively, with programme scale-up, averting a total of 12·21 million (95% UI 11·39-14·16) disability-adjusted life-years. However, the effect was compromised by restricted access to key medicines, resulting in approximately 58 700 additional deaths (33 400 [95% UI 22 000-41 000] due to AIDS and 25 300 [19 300-30 400] due to tuberculosis) compared with the unconstrained scenario. Between 2023 and 2033, eliminating HIV treatment stockouts could avert an estimated 12 100 deaths compared with the baseline scenario, and improved access to tuberculosis prevention medications could prevent 5600 deaths in addition to those achieved through programme scale-up alone. With programme scale-up under the constrained scenario, consumable stockouts are projected to require an estimated 14·3 million extra patient-facing hours between 2023 and 2033, mostly from clinical or nursing staff, compared with the unconstrained scenario. In 2033, with enhanced screening, 188 000 (81%) of 232 900 individuals projected to present with active tuberculosis could start tuberculosis treatment within 2 weeks of initial presentation if all required consumables were available, but only 8600 (57%) of 15 100 presenting under the baseline scenario. INTERPRETATION: Ignoring frailties in the health-care system, in particular the potential non-availability of consumables, in projections of HIV and tuberculosis programme scale-up might risk overestimating potential health impacts and underestimating required health system resources. Simultaneous health system strengthening alongside programme scale-up is crucial, and should yield greater benefits to population health while mitigating the strain on a heavily constrained health-care system. FUNDING: Wellcome and UK Research and Innovation as part of the Global Challenges Research Fund

    Modeling Contraception and Pregnancy in Malawi: A Thanzi La Onse Mathematical Modeling Study.

    Get PDF
    Malawi has high unmet need for contraception with a costed national plan to increase contraception use. Estimating how such investments might impact future population size in Malawi can help policymakers understand effects and value of policies to increase contraception uptake. We developed a new model of contraception and pregnancy using individual-level data capturing complexities of contraception initiation, switching, discontinuation, and failure by contraception method, accounting for differences by individual characteristics. We modeled contraception scale-up via a population campaign to increase initiation of contraception (Pop) and a postpartum family planning intervention (PPFP). We calibrated the model without new interventions to the UN World Population Prospects 2019 medium variant projection of births for Malawi. Without interventions Malawi's population passes 60 million in 2084; with Pop and PPFP interventions. it peaks below 35 million by 2100. We compare contraception coverage and costs, by method, with and without interventions, from 2023 to 2050. We estimate investments in contraception scale-up correspond to only 0.9 percent of total health expenditure per capita though could result in dramatic reductions of current pressures of very rapid population growth on health services, schools, land, and society, helping Malawi achieve national and global health and development goals

    Health workforce needs in Malawi:analysis of the Thanzi La Onse integrated epidemiological model of care

    Get PDF
    BACKGROUND: To make the best use of health resources, it is crucial to understand the healthcare needs of a population-including how needs will evolve and respond to changing epidemiological context and patient behaviour-and how this compares to the capabilities to deliver healthcare with the existing workforce. Existing approaches to planning either rely on using observed healthcare demand from a fixed historical period or using models to estimate healthcare needs within a narrow domain (e.g., a specific disease area or health programme). A new data-grounded modelling method is proposed by which healthcare needs and the capabilities of the healthcare workforce can be compared and analysed under a range of scenarios: in particular, when there is much greater propensity for healthcare seeking. METHODS: A model representation of the healthcare workforce, one that formalises how the time of the different cadres is drawn into the provision of units of healthcare, was integrated with an individual-based epidemiological model-the Thanzi La Onse model-that represents mechanistically the development of disease and ill-health and patients' healthcare seeking behaviour. The model was applied in Malawi using routinely available data and the estimates of the volume of health service delivered were tested against officially recorded data. Model estimates of the "time needed" and "time available" for each cadre were compared under different assumptions for whether vacant (or established) posts are filled and healthcare seeking behaviour. RESULTS: The model estimates of volume of each type of service delivered were in good agreement with the available data. The "time needed" for the healthcare workforce greatly exceeded the "time available" (overall by 1.82-fold), especially for pharmacists (6.37-fold) and clinicians (2.83-fold). This discrepancy would be largely mitigated if all vacant posts were filled, but the large discrepancy would remain for pharmacists (2.49-fold). However, if all of those becoming ill did seek care immediately, the "time needed" would increase dramatically and exceed "time supply" (2.11-fold for nurses and midwives, 5.60-fold for clinicians, 9.98-fold for pharmacists) even when there were no vacant positions. CONCLUSIONS: The results suggest that services are being delivered in less time on average than they should be, or that healthcare workers are working more time than contracted, or a combination of the two. Moreover, the analysis shows that the healthcare system could become overwhelmed if patients were more likely to seek care. It is not yet known what the health consequences of such changes would be but this new model provides-for the first time-a means to examine such questions

    Canagliflozin and Cardiovascular and Renal Outcomes in Type 2 Diabetes Mellitus and Chronic Kidney Disease in Primary and Secondary Cardiovascular Prevention Groups

    Get PDF
    Background: Canagliflozin reduces the risk of kidney failure in patients with type 2 diabetes mellitus and chronic kidney disease, but effects on specific cardiovascular outcomes are uncertain, as are effects in people without previous cardiovascular disease (primary prevention). Methods: In CREDENCE (Canagliflozin and Renal Events in Diabetes With Established Nephropathy Clinical Evaluation), 4401 participants with type 2 diabetes mellitus and chronic kidney disease were randomly assigned to canagliflozin or placebo on a background of optimized standard of care. Results: Primary prevention participants (n=2181, 49.6%) were younger (61 versus 65 years), were more often female (37% versus 31%), and had shorter duration of diabetes mellitus (15 years versus 16 years) compared with secondary prevention participants (n=2220, 50.4%). Canagliflozin reduced the risk of major cardiovascular events overall (hazard ratio [HR], 0.80 [95% CI, 0.67-0.95]; P=0.01), with consistent reductions in both the primary (HR, 0.68 [95% CI, 0.49-0.94]) and secondary (HR, 0.85 [95% CI, 0.69-1.06]) prevention groups (P for interaction=0.25). Effects were also similar for the components of the composite including cardiovascular death (HR, 0.78 [95% CI, 0.61-1.00]), nonfatal myocardial infarction (HR, 0.81 [95% CI, 0.59-1.10]), and nonfatal stroke (HR, 0.80 [95% CI, 0.56-1.15]). The risk of the primary composite renal outcome and the composite of cardiovascular death or hospitalization for heart failure were also consistently reduced in both the primary and secondary prevention groups (P for interaction >0.5 for each outcome). Conclusions: Canagliflozin significantly reduced major cardiovascular events and kidney failure in patients with type 2 diabetes mellitus and chronic kidney disease, including in participants who did not have previous cardiovascular disease

    Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants

    Get PDF
    Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling. © 2018 The Author(s).Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling. © 2018 The Author(s).Peer reviewe
    corecore