215 research outputs found

    High-speed Photometric Observations of ZZ Ceti White Dwarf Candidates

    Full text link
    We present high-speed photometric observations of ZZ Ceti white dwarf candidates drawn from the spectroscopic survey of bright DA stars from the Villanova White Dwarf Catalog by Gianninas et al., and from the recent spectroscopic survey of white dwarfs within 40 parsecs of the Sun by Limoges et al. We report the discovery of six new ZZ Ceti pulsators from these surveys, and several photometrically constant DA white dwarfs, which we then use to refine the location of the ZZ Ceti instability strip.Comment: 4 pages, 1 table, 2 figures, to appear in "19th European White Dwarf Workshop" in the ASP Conference Serie

    Chandra grating spectroscopy of three hot white dwarfs

    Get PDF
    High-resolution soft X-ray spectroscopic observations of single hot white dwarfs are scarce. With the Chandra Low-Energy Transmission Grating, we have observed two white dwarfs, one is of spectral type DA (LB 1919) and the other is a non-DA of spectral type PG1159 (PG 1520+525). The spectra of both stars are analyzed, together with an archival Chandra spectrum of another DA white dwarf (GD 246). The soft X-ray spectra of the two DA white dwarfs are investigated in order to study the effect of gravitational settling and radiative levitation of metals in their photospheres. LB 1919 is of interest because it has a significantly lower metallicity than DAs with otherwise similar atmospheric parameters. GD 246 is the only white dwarf known that shows identifiable individual iron lines in the soft X-ray range. For the PG1159 star, a precise effective temperature determination is performed in order to confine the position of the blue edge of the GW Vir instability region in the HRD. (abridged)Comment: A&A, in pres

    The Discovery of the Most Metal-Rich White Dwarf: Composition of a Tidally Disrupted Extrasolar Dwarf Planet

    Full text link
    Cool white dwarf stars are usually found to have an outer atmosphere that is practically pure in hydrogen or helium. However, a small fraction have traces of heavy elements that must originate from the accretion of extrinsic material, most probably circumstellar matter. Upon examining thousands of Sloan Digital Sky Survey spectra, we discovered that the helium-atmosphere white dwarf SDSS J073842.56+183509.6 shows the most severe metal pollution ever seen in the outermost layers of such stars. We present here a quantitative analysis of this exciting star by combining high S/N follow-up spectroscopic and photometric observations with model atmospheres and evolutionary models. We determine the global structural properties of our target star, as well as the abundances of the most significant pollutants in its atmosphere, i.e., H, O, Na, Mg, Si, Ca, and Fe. The relative abundances of these elements imply that the source of the accreted material has a composition similar to that of Bulk Earth. We also report the signature of a circumstellar disk revealed through a large infrared excess in JHK photometry. Combined with our inferred estimate of the mass of the accreted material, this strongly suggests that we are witnessing the remains of a tidally disrupted extrasolar body that was as large as Ceres.Comment: 7 pages in emulateapj, 5 figures, accepted for publication in Ap

    Multiwavelength Observations of the Hot DB Star PG 0112+104

    Full text link
    We present a comprehensive multiwavelength analysis of the hot DB white dwarf PG 0112+104. Our analysis relies on newly-acquired FUSE observations, on medium-resolution FOS and GHRS data, on archival high-resolution GHRS observations, on optical spectrophotometry both in the blue and around Halpha, as well as on time-resolved photometry. From the optical data, we derive a self-consistent effective temperature of 31,300+-500 K, a surface gravity of log g = 7.8 +- 0.1 (M=0.52 Msun), and a hydrogen abundance of log N(H)/N(He) < -4.0. The FUSE spectra reveal the presence of CII and CIII lines that complement the previous detection of CII transitions with the GHRS. The improved carbon abundance in this hot object is log N(C)/N(He) = -6.15 +- 0.23. No photospheric features associated with other heavy elements are detected. We reconsider the role of PG 0112+104 in the definition of the blue edge of the V777 Her instability strip in light of our high-speed photometry, and contrast our results with those of previous observations carried out at the McDonald Observatory.Comment: 10 pages in emulateapj, 9 figures, accepted for publication in Ap

    Galoisian Approach to Supersymmetric Quantum Mechanics

    Get PDF
    This thesis is concerning to the Differential Galois Theory point of view of the Supersymmetric Quantum Mechanics. The main object considered here is the non-relativistic stationary Schr\"odinger equation, specially the integrable cases in the sense of the Picard-Vessiot theory and the main algorithmic tools used here are the Kovacic algorithm and the \emph{algebrization method} to obtain linear differential equations with rational coefficients. We analyze the Darboux transformations, Crum iterations and supersymmetric quantum mechanics with their \emph{algebrized} versions from a Galoisian approach. Applying the algebrization method and the Kovacic's algorithm we obtain the ground state, the set of eigenvalues, eigenfunctions, the differential Galois groups and eigenrings of some Schr\"odinger equation with potentials such as exactly solvable and shape invariant potentials. Finally, we introduce one methodology to find exactly solvable potentials: to construct other potentials, we apply the algebrization algorithm in an inverse way since differential equations with orthogonal polynomials and special functions as solutions.Comment: Phd Dissertation, Universitat Politecnica de Catalunya, 200

    Identification of a novel gene regulating amygdala-mediated fear extinction.

    Get PDF
    Recent years have seen advances in our understanding of the neural circuits associated with trauma-related disorders, and the development of relevant assays for these behaviors in rodents. Although inherited factors are known to influence individual differences in risk for these disorders, it has been difficult to identify specific genes that moderate circuit functions to affect trauma-related behaviors. Here, we exploited robust inbred mouse strain differences in Pavlovian fear extinction to uncover quantitative trait loci (QTL) associated with this trait. We found these strain differences to be resistant to developmental cross-fostering and associated with anatomical variation in basolateral amygdala (BLA) perineuronal nets, which are developmentally implicated in extinction. Next, by profiling extinction-driven BLA expression of QTL-linked genes, we nominated Ppid (peptidylprolyl isomerase D, a member of the tetratricopeptide repeat (TPR) protein family) as an extinction-related candidate gene. We then showed that Ppid was enriched in excitatory and inhibitory BLA neuronal populations, but at lower levels in the extinction-impaired mouse strain. Using a virus-based approach to directly regulate Ppid function, we demonstrated that downregulating BLA-Ppid impaired extinction, while upregulating BLA-Ppid facilitated extinction and altered in vivo neuronal extinction encoding. Next, we showed that Ppid colocalized with the glucocorticoid receptor (GR) in BLA neurons and found that the extinction-facilitating effects of Ppid upregulation were blocked by a GR antagonist. Collectively, our results identify Ppid as a novel gene involved in regulating extinction via functional actions in the BLA, with possible implications for understanding genetic and pathophysiological mechanisms underlying risk for trauma-related disorders

    NUMAC: Description of the Nested Unified Model With Aerosols and Chemistry, and Evaluation With KORUS‐AQ Data

    Get PDF
    We describe and evaluate a system for regional modeling of atmospheric composition with the Met Office Unified Model (UM), suitable for climate, weather forecasting and air quality applications. In this system, named NUMAC (“Nested UM with Aerosols and Chemistry”), a global model provides boundary conditions for regional models nested within it, using the Met Office's Regional Nesting Suite for multi-scale simulations. The regional models, which can run at convection-permitting or cloud-resolving scales, use the same code as the global model. The system includes double-moment prognostic aerosol microphysics with interactive chemistry of sulfur species, ozone, NOx, and CO as in the UK Earth System Model. Double-moment prognostic cloud microphysics is optional. To test NUMAC, we compare simulations to surface and aircraft measurements from NASA's Korea-United States Air Quality campaign over South Korea. The performance of the regional model, which we run at 5 km resolution, is similar to the well-evaluated global model when the regional and global models use the same emissions. Most species such as ozone, NOx, OH, or PM2.5 are simulated within a factor of 2 of observations most of the time, though they are biased low compared to monitors in polluted areas (observed surface dry PM2.5 averages 28 μgm−3 but we simulate 17 μgm−3). Meteorology and clouds are represented satisfactorily. With higher-resolution emissions, many of the low model biases are reduced, but a tuning was required to keep NO concentrations realistic, indicating shortcomings in the chemistry scheme. We demonstrate the potential of NUMAC for studies of aerosol-cloud interactions

    Intellectual Impairment in School-Age Children Exposed to Manganese from Drinking Water

    Get PDF
    ABSTRACT: BACKGROUND: Manganese is an essential nutrient, but in excess it can be a potent neurotoxicant. Despite the common occurrence of manganese in groundwater, the risks associated with this source of exposure are largely unknown. OBJECTIVES: Our first aim was to assess the relations between exposure to manganese from drinking water and children's intelligence quotient (IQ). Second, we examined the relations between manganese exposures from water consumption and from the diet with children's hair manganese concentration. METHODS: This cross-sectional study included 362 children 6-13 years of age living in communities supplied by groundwater. Manganese concentration was measured in home tap water (MnW) and children's hair (MnH). We estimated manganese intake from water ingestion and the diet using a food frequency questionnaire and assessed IQ with the Wechsler Abbreviated Scale of Intelligence. RESULTS: The median MnW in children's home tap water was 34 microg/L (range, 1-2,700 microg/L). MnH increased with manganese intake from water consumption, but not with dietary manganese intake. Higher MnW and MnH were significantly associated with lower IQ scores. A 10-fold increase in MnW was associated with a decrease of 2.4 IQ points (95% confidence interval: -3.9 to -0.9; p < 0.01), adjusting for maternal intelligence, family income, and other potential confounders. There was a 6.2-point difference in IQ between children in the lowest and highest MnW quintiles. MnW was more strongly associated with Performance IQ than Verbal IQ. CONCLUSIONS: The findings of this cross-sectional study suggest that exposure to manganese at levels common in groundwater is associated with intellectual impairment in children
    corecore