913 research outputs found

    Analysis of Non-Linear Probabilistic Hybrid Systems

    Full text link
    This paper shows how to compute, for probabilistic hybrid systems, the clock approximation and linear phase-portrait approximation that have been proposed for non probabilistic processes by Henzinger et al. The techniques permit to define a rectangular probabilistic process from a non rectangular one, hence allowing the model-checking of any class of systems. Clock approximation, which applies under some restrictions, aims at replacing a non rectangular variable by a clock variable. Linear phase-approximation applies without restriction and yields an approximation that simulates the original process. The conditions that we need for probabilistic processes are the same as those for the classic case.Comment: In Proceedings QAPL 2011, arXiv:1107.074

    Kleene algebra with domain

    Full text link
    We propose Kleene algebra with domain (KAD), an extension of Kleene algebra with two equational axioms for a domain and a codomain operation, respectively. KAD considerably augments the expressiveness of Kleene algebra, in particular for the specification and analysis of state transition systems. We develop the basic calculus, discuss some related theories and present the most important models of KAD. We demonstrate applicability by two examples: First, an algebraic reconstruction of Noethericity and well-foundedness; second, an algebraic reconstruction of propositional Hoare logic.Comment: 40 page

    The Road to Safer Care: Still Under Construction

    Get PDF

    Program Derivation by Correctness Enhacements

    Full text link
    Relative correctness is the property of a program to be more-correct than another program with respect to a given specification. Among the many properties of relative correctness, that which we found most intriguing is the property that program P' refines program P if and only if P' is more-correct than P with respect to any specification. This inspires us to reconsider program derivation by successive refinements: each step of this process mandates that we transform a program P into a program P' that refines P, i.e. P' is more-correct than P with respect to any specification. This raises the question: why should we want to make P' more-correct than P with respect to any specification, when we only have to satisfy specification R? In this paper, we discuss a process of program derivation that replaces traditional sequence of refinement-based correctness-preserving transformations starting from specification R by a sequence of relative correctness-based correctness-enhancing transformations starting from abort.Comment: In Proceedings Refine'15, arXiv:1606.0134

    Computing Distances between Probabilistic Automata

    Full text link
    We present relaxed notions of simulation and bisimulation on Probabilistic Automata (PA), that allow some error epsilon. When epsilon is zero we retrieve the usual notions of bisimulation and simulation on PAs. We give logical characterisations of these notions by choosing suitable logics which differ from the elementary ones, L with negation and L without negation, by the modal operator. Using flow networks, we show how to compute the relations in PTIME. This allows the definition of an efficiently computable non-discounted distance between the states of a PA. A natural modification of this distance is introduced, to obtain a discounted distance, which weakens the influence of long term transitions. We compare our notions of distance to others previously defined and illustrate our approach on various examples. We also show that our distance is not expansive with respect to process algebra operators. Although L without negation is a suitable logic to characterise epsilon-(bi)simulation on deterministic PAs, it is not for general PAs; interestingly, we prove that it does characterise weaker notions, called a priori epsilon-(bi)simulation, which we prove to be NP-difficult to decide.Comment: In Proceedings QAPL 2011, arXiv:1107.074

    Labelled transition systems as a Stone space

    Get PDF
    A fully abstract and universal domain model for modal transition systems and refinement is shown to be a maximal-points space model for the bisimulation quotient of labelled transition systems over a finite set of events. In this domain model we prove that this quotient is a Stone space whose compact, zero-dimensional, and ultra-metrizable Hausdorff topology measures the degree of bisimilarity such that image-finite labelled transition systems are dense. Using this compactness we show that the set of labelled transition systems that refine a modal transition system, its ''set of implementations'', is compact and derive a compactness theorem for Hennessy-Milner logic on such implementation sets. These results extend to systems that also have partially specified state propositions, unify existing denotational, operational, and metric semantics on partial processes, render robust consistency measures for modal transition systems, and yield an abstract interpretation of compact sets of labelled transition systems as Scott-closed sets of modal transition systems.Comment: Changes since v2: Metadata updat

    Master of Science in Healthcare Quality and Safety (MS-HQS)

    Get PDF

    The theta-join as a join with theta

    Get PDF
    We present an algebra for the classical database operators. Contrary to most approaches we use (inner) join and projection as the basic operators. Theta joins result by representing theta as a database table itself and defining theta-join as a join with that table. The same technique works for selection. With this, (point-free) proofs of the standard optimisation laws become very simple and uniform. The approach also applies to proving join/projection laws for preference queries. Extending the earlier approach of [16], we replace disjointness assumptions on the table types by suitable consistency conditions. Selected results have been machine-verified using the CALCCHECK tool

    Littérature et mathématiques : introduction à une approche interdisciplinaire

    Get PDF
    L’aventure que nous avons entreprise il y a plus de cinq ans afin d’explorer des oeuvres littéraires dans une perspective interdisciplinaire français et mathématiques vient notamment de notre passion commune pour l’univers créatif de ces deux disciplines. Il est bien connu que l’oeuvre littéraire offre un terreau fertile pour donner forme à diverses interprétations, pour se questionner et pour réfléchir aux propositions des auteurs. Cependant, ce n’est peut-être pas cette expérience créative que vous avez vécue des mathématiques ; pourtant, sans cet espace d’imaginaire, peu de nouvelles solutions à des problèmes de la vie quotidienne verraient le jour. C’est pourquoi, dans ce dossier, nous avons privilégié une entrée plus directe dans les textes littéraires par les mathématiques afin de démontrer que lier littérature et mathématiques s’avère un jeu indéniablement inépuisable de fantaisie pour autant que des oeuvres s’y prêtent
    • …
    corecore