44 research outputs found

    Website Penelusuran Artikel Ilmiah Dengan Memanfaatkan Parscit, Google Scholar Dan Mendeley Api

    Full text link
    Jurnal ilmiah berperan penting sebagai referensi bagi banyak orang ketika melakukan sebuah penelitian. Hal ini disebabkan karena jurnal ilmiah memaparkan suatu pembahasan secara ilmiah yang dilakukan oleh penulis atau peneliti untuk membagikan suatu hal secara logis dan sistematis kepada para pembacanya. Banyak Perusahaan besar seperti Google, Mendeley, Endnote, Refworks, Zotero membuat sebuah website untuk menampung semua jurnal yang dipublikasi. Namun setiap website memiliki koleksi dan kapasitas jurnal yang berbeda-beda.Oleh karena itu, pada proyek ini dibuat sebuah website yang berguna untuk mencari koleksi jurnal yang sesuai dengan kebutuhan. Proyek ini dibuat untuk mengefisienkan pencarian jurnal ilmiah yang ada di Mendeley dan Google Scholar dengan memanfaatkan data paper hasil ekstraksi sitasi ParsCit. Aplikasi website ini dibuat menggunakan Hypertext Preprocessor (PHP) sebagai bahasa pemrograman dan MySQL sebagai database server.Dari hasil pengujian, dapat diketahui bahwa proses pencarian paper di Mendeley mendapatkan hasil yang lebih banyak dibandingkan dengan proses pencarian paper di Google Scholar. Hal ini disebabkan karena Mendeley menyediakan API untuk akses data paper, sedangkan Google Scholar tidak

    Interaction of the Tyrosine Kinase Pyk2 with the N -Methyl-d-aspartate Receptor Complex via the Src Homology 3 Domains of PSD-95 and SAP102

    Get PDF
    The protein-tyrosine kinase Pyk2/CAKbeta/CADTK is a key activator of Src in many cells. At hippocampal synapses, induction of long term potentiation requires the Pyk2/Src signaling pathway, which up-regulates the activity of N-methyl-d-aspartate-type glutamate receptors. Because localization of protein kinases close to their substrates is crucial for effective phosphorylation, we investigated how Pyk2 might be recruited to the N-methyl-d-aspartate receptor complex. This interaction is mediated by PSD-95 and its homolog SAP102. Both proteins colocalize with Pyk2 at postsynaptic dendritic spines in the cerebral cortex. The proline-rich regions in the C-terminal half of Pyk2 bind to the SH3 domain of PSD-95 and SAP102. The SH3 and guanylate kinase homology (GK) domain of PSD-95 and SAP102 interact intramolecularly, but the physiological significance of this interaction has been unclear. We show that Pyk2 effectively binds to the Src homology 3 (SH3) domain of SAP102 only when the GK domain is removed from the SH3 domain. Characterization of PSD-95 and SAP102 as adaptor proteins for Pyk2 fills a critical gap in the understanding of the spatial organization of the Pyk2-Src signaling pathway at the postsynaptic site and reveals a physiological function of the intramolecular SH3-GK domain interaction in SAP102

    Clonal analysis of Notch1-expressing cells reveals the existence of unipotent stem cells that retain long-term plasticity in the embryonic mammary gland.

    Get PDF
    Recent lineage tracing studies have revealed that mammary gland homeostasis relies on unipotent stem cells. However, whether and when lineage restriction occurs during embryonic mammary development, and which signals orchestrate cell fate specification, remain unknown. Using a combination of in vivo clonal analysis with whole mount immunofluorescence and mathematical modelling of clonal dynamics, we found that embryonic multipotent mammary cells become lineage-restricted surprisingly early in development, with evidence for unipotency as early as E12.5 and no statistically discernable bipotency after E15.5. To gain insights into the mechanisms governing the switch from multipotency to unipotency, we used gain-of-function Notch1 mice and demonstrated that Notch activation cell autonomously dictates luminal cell fate specification to both embryonic and basally committed mammary cells. These functional studies have important implications for understanding the signals underlying cell plasticity and serve to clarify how reactivation of embryonic programs in adult cells can lead to cancer.Wellcome Trus

    Denial of long-term issues with agriculture on tropical peatlands will have devastating consequences

    Get PDF
    Non peer reviewe

    Use of a conditional Ubr5 mutant allele to investigate the role an N-end rule ubiquitin-protein ligase in Hedgehog signalling and embryonic limb development

    Get PDF
    Hedgehog (Hh) signalling is a potent regulator of cell fate and function. While much is known about the events within a Hh-stimulated cell, far less is known about the regulation of Hh-ligand production. Drosophila Hyperplastic Discs (Hyd), a ubiquitin-protein ligase, represents one of the few non-transcription factors that independently regulates both hh mRNA expression and pathway activity. Using a murine embryonic stem cell system, we revealed that shRNAi of the mammalian homologue of hyd, Ubr5, effectively prevented retinoic-acid-induced Sonic hedgehog (Shh) expression. We next investigated the UBR5:Hh signalling relationship in vivo by generating and validating a mouse bearing a conditional Ubr5 loss-of-function allele. Conditionally deleting Ubr5 in the early embryonic limb-bud mesenchyme resulted in a transient decrease in Indian hedgehog ligand expression and decreased Hh pathway activity, around E13.5. Although Ubr5-deficient limbs and digits were, on average, shorter than control limbs, the effects were not statistically significant. Hence, while loss of UBR5 perturbed Hedgehog signalling in the developing limb, there were no obvious morphological defects. In summary, we report the first conditional Ubr5 mutant mouse and provide evidence for a role for UBR5 in influencing Hh signalling, but are uncertain to whether the effects on Hedgehog signaling were direct (cell autonomous) or indirect (non-cell-autonomous). Elaboration of the cellular/molecular mechanism(s) involved may help our understanding on diseases and developmental disorders associated with aberrant Hh signalling

    Detection of Wolbachia

    No full text

    The existence and evolution of diffusion-perfusion mismatched tissue in white and gray matter after acute stroke

    No full text
    Background and Purpose - Although white matter is a potential target of acute stroke therapy, there is uncertainty about its relative resistance to ischemia and whether it is capable of mounting a penumbral response. To explore these issues further, we examined the differential effects of ischemia on gray and white matter using magnetic resonance (MR) perfusion-diffusion mismatch after acute stroke
    corecore