454 research outputs found

    From The Cover: Increased salinization of fresh water in the northeastern United States

    Get PDF
    Chloride concentrations are increasing at a rate that threatens the availability of fresh water in the northeastern United States. Increases in roadways and deicer use are now salinizing fresh waters, degrading habitat for aquatic organisms, and impacting large supplies of drinking water for humans throughout the region. We observed chloride concentrations of up to 25% of the concentration of seawater in streams of Maryland, New York, and New Hampshire during winters, and chloride concentrations remaining up to 100 times greater than unimpacted forest streams during summers. Mean annual chloride concentration increased as a function of impervious surface and exceeded tolerance for freshwater life in suburban and urban watersheds. Our analysis shows that if salinity were to continue to increase at its present rate due to changes in impervious surface coverage and current management practices, many surface waters in the northeastern United States would not be potable for human consumption and would become toxic to freshwater life within the next century

    Forests as Commons – Changing Traditions and Governance in Europe

    Get PDF
    Commons are complex institutions and exist across the world in a wide range of situations regarding locally developed governance and management systems of many different natural resources. For many people commons remain associated with Hardin’s theory concerning the “Tragedy of the Commons” (1968), in which he assumed that local users of a natural resource are unable to formulate governance and management structures concerning their own choices that took into account the long-term sustainability of the resource itself. As a result, Hardin articulated that the tragedy was that the resource would inevitably become degraded in such situations and that the solution was private or public ownership. However, across Europe many forests have for a very long period of time successfully been managed as commons, just as they have in many other parts of the world. This chapter has three main aims: It will provide an introduction to the various types of commons before going on to link the issue of commons to the traditional forest landscapes of Europe, and it will look at how the role of forests and forest landscapes has changed and how it may change further in the future

    Identifying future research directions for biodiversity, ecosystem services and sustainability: perspectives from early-career researchers

    Get PDF
    We aimed to identify priority research questions in the field of biodiversity, ecosystem services and sustainability (BESS), based on a workshop held during the NRG BESS Conference for Early Career Researchers on BESS, and to compare these to existing horizon scanning exercises. This work highlights the need for improved data availability through collaboration and knowledge exchange, which, in turn, can support the integrated valuation and sustainable management of ecosystems in response to global change. In addition, clear connectivity among different research themes in this field further emphasizes the need to consider a wider range of topics simultaneously to ensure the sustainable management of ecosystems for human wellbeing. In contrast to other horizon scanning exercises, our focus was more interdisciplinary and more concerned with the limits of sustainability and dynamic relationships between social and ecological systems. The identified questions could provide a framework for researchers, policy makers, funding agencies and the private sector to advance knowledge in biodiversity and ES research and to develop and implement policies to enable sustainable future development

    Long-term Trends from Ecosystem Research at the Hubbard Brook Experimental Forest

    Get PDF
    The Hubbard Brook Experimental Forest was established by the U.S. Forest Service in 1955 as a major center for hydrologic research in the Northeast. The Hubbard Brook Ecosystem Study originated 8 years later with the idea of using the small watershed approach to study element flux and cycling and the response of forest ecosystems to disturbance. Since that time, the research program at Hubbard Brook has expanded to include various physical, chemical and biological measurements collected by researchers from a number of cooperating institutions. Collaborative, long-term data are the keystone of the Hubbard Brook Ecosystem Study and have provided invaluable insight into how ecosystems respond to disturbances such as air pollution, climate change, forest disturbance, and forest management practices. This report highlights long- term ecological trends at Hubbard Brook, provides explanations for some of the trends, and lists references from the scientific literature for further reading

    Assessing the Potential Impacts to Riparian Ecosystems Resulting from Hemlock Mortality in Great Smoky Mountains National Park

    Get PDF
    Hemlock Woolly Adelgid (Adelges tsugae) is spreading across forests in eastern North America, causing mortality of eastern hemlock (Tsuga canadensis [L.] Carr.) and Carolina hemlock (Tsuga caroliniana Engelm.). The loss of hemlock from riparian forests in Great Smoky Mountains National Park (GSMNP) may result in significant physical, chemical, and biological alterations to stream environments. To assess the influence of riparian hemlock stands on stream conditions and estimate possible impacts from hemlock loss in GSMNP, we paired hardwood- and hemlock-dominated streams to examine differences in water temperature, nitrate concentrations, pH, discharge, and available photosynthetic light. We used a Geographic Information System (GIS) to identify stream pairs that were similar in topography, geology, land use, and disturbance history in order to isolate forest type as a variable. Differences between hemlock- and hardwood-dominated streams could not be explained by dominant forest type alone as forest type yields no consistent signal on measured conditions of headwater streams in GSMNP. The variability in the results indicate that other landscape variables, such as the influence of understory Rhododendron species, may exert more control on stream conditions than canopy composition. The results of this study suggest that the replacement of hemlock overstory with hardwood species will have minimal impact on long-term stream conditions, however disturbance during the transition is likely to have significant impacts. Management of riparian forests undergoing hemlock decline should, therefore, focus on facilitating a faster transition to hardwood-dominated stands to minimize long-term effects on water quality

    Discharge–calcium concentration relationships in streams of the Amazon and Cerrado of Brazil : soil or land use controlled

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of springer for personal use, not for redistribution. The definitive version was published in Biogeochemistry 105 (2011): 19-35, doi:10.1007/s10533-011-9574-2.Stream discharge-concentration relationships are indicators of terrestrial ecosystem function. Throughout the Amazon and Cerrado regions of Brazil rapid changes in land use and land cover may be altering these hydrochemical relationships. The current analysis focuses on factors controlling the discharge-calcium (Ca) concentration relationship since previous research in these regions has demonstrated both positive and negative slopes in linear log10discharge-log10Ca concentration regressions. The objective of the current study was to evaluate factors controlling stream discharge-Ca concentration relationships including year, season, stream order, vegetation cover, land use, and soil classification. It was hypothesized that land use and soil class are the most critical attributes controlling discharge-Ca concentration relationships. A multilevel, linear regression approach was utilized with data from 28 streams throughout Brazil. These streams come from three distinct regions and varied broadly in watershed size (106 ha) and discharge (10-5.7 to 103.2 m3 sec-1). Linear regressions of log10Ca versus log10discharge in 13 streams have a preponderance of negative slopes with only two streams having significant positive slopes. An ANOVA decomposition suggests the effect of discharge on Ca concentration is large but variable. Vegetation cover, which incorporates aspects of land use, explains the largest proportion of the variance in the effect of discharge on Ca followed by season and year. In contrast, stream order, land use, and soil class explain most of the variation in stream Ca concentration. In the current data set, soil class, which is related to lithology, has an important effect on Ca concentration but land use, likely through its effect on runoff concentration and hydrology, has a greater effect on discharge-concentration relationships.This research was supported by grant #’s NCC5-686 and NNG06GE88A of NASA’s Terrestrial Ecology Program as part of the Large-scale Biosphere-Atmosphere Experiment in Amazonia (LBA-ECO) project

    Long-range chemical sensitivity in the sulfur K-edge X-ray absorption spectra of substituted thiophenes

    Get PDF
    © 2014 American Chemical Society. Thiophenes are the simplest aromatic sulfur-containing compounds and are stable and widespread in fossil fuels. Regulation of sulfur levels in fuels and emissions has become and continues to be ever more stringent as part of governments' efforts to address negative environmental impacts of sulfur dioxide. In turn, more effective removal methods are continually being sought. In a chemical sense, thiophenes are somewhat obdurate and hence their removal from fossil fuels poses problems for the industrial chemist. Sulfur K-edge X-ray absorption spectroscopy provides key information on thiophenic components in fuels. Here we present a systematic study of the spectroscopic sensitivity to chemical modifications of the thiophene system. We conclude that while the utility of sulfur K-edge X-ray absorption spectra in understanding the chemical composition of sulfur-containing fossil fuels has already been demonstrated, care must be exercised in interpreting these spectra because the assumption of an invariant spectrum for thiophenic forms may not always be valid
    corecore