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Abstract 23 

Stream discharge-concentration relationships are indicators of terrestrial ecosystem 24 

function. Throughout the Amazon and Cerrado regions of Brazil rapid changes in land use and 25 

land cover may be altering these hydrochemical relationships.  The current analysis focuses on 26 

factors controlling the discharge-calcium (Ca) concentration relationship since previous research 27 

in these regions has demonstrated both positive and negative slopes in linear log10discharge-28 

log10Ca concentration regressions.  The objective of the current study was to evaluate factors 29 

controlling stream discharge-Ca concentration relationships including year, season, stream order, 30 

vegetation cover, land use, and soil classification.  It was hypothesized that land use and soil 31 

class are the most critical attributes controlling discharge-Ca concentration relationships. A 32 

multilevel, linear regression approach was utilized with data from 28 streams throughout Brazil.  33 

These streams come from three distinct regions and varied broadly in watershed size (<1 to >10
6
 34 

ha) and discharge (10
-5.7 

to 10
3.2

 m
3
 sec

-1
).  Linear regressions of log10Ca versus log10discharge in 35 

13 streams have a preponderance of negative slopes with only two streams having significant 36 

positive slopes.  An ANOVA decomposition suggests the effect of discharge on Ca concentration 37 

is large but variable.  Vegetation cover, which incorporates aspects of land use, explains the 38 

largest proportion of the variance in the effect of discharge on Ca followed by season and year.   39 

In contrast, stream order, land use, and soil class explain most of the variation in stream Ca 40 

concentration. In the current data set, soil class, which is related to lithology, has an important 41 

effect on Ca concentration but land use, likely through its effect on runoff concentration and 42 

hydrology, has a greater effect on discharge-concentration relationships. 43 

 44 

 45 
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 Introduction 46 

 Streamwater discharge-concentration relationships are indicators of terrestrial ecosystem 47 

function (Bond, 1979).  The slope of the discharge-concentration relationship, whether positive 48 

or negative, has been used to infer the sources and flowpaths of dissolved constituents to streams 49 

(Saunders and Lewis, 1989).  Source waters that travel long flowpaths such as groundwaters and 50 

interact with primary minerals in bedrock tend to contribute high concentrations of the rock 51 

derived elements (e.g., Ca
+2

, Mg
+2

, and Si) during low flow (Drever, 1997).  In contrast, source 52 

waters that are quickly transported to streams during runoff events may be dilute in the rock 53 

derived elements but rich in organic carbon or nitrogen due to interaction with the soil O horizon 54 

(Hornberger et al., 1994).  In this case, organic C and N may have a positive discharge-55 

concentration relationship, at least during the earlier stages of storm runoff, while the rock 56 

derived elements present a negative discharge-concentration relationship as groundwaters are 57 

diluted by surface waters (Lewis and Grant, 1979).  Empirical studies commonly observe 58 

negative discharge-concentration relationships for the rock derived elements with positive 59 

relationships being atypical (Meyer et al., 1988).   60 

The current analysis focuses specifically on discharge-Ca concentration relationships in 61 

the Amazon and Cerrado of Brazil since previous research in a watershed on highly weathered 62 

soil, which is common in both regions, demonstrated a positive discharge-Ca concentration 63 

relationship (Markewitz et al., 2001).  Positive slopes in Ca-discharge concentration relationships 64 

were reported by Meyer et al. (1988) but no mechanism was identified.  In the Amazonian 65 

watershed where a positive slope in Ca-discharge was observed, two competing hypotheses were 66 

proposed:  1) it is possible that these positive relationships could result where soils and 67 

underlying parent material have become so depleted of Ca that surface runoff concentrations 68 
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exceed groundwater concentrations or 2) land use conversion through slash-and-burn practices 69 

can so enrich surface soils in Ca that surface runoff concentrations exceed groundwater 70 

concentrations (Markewitz et al., 2001).  Significant differences in stream water Ca 71 

concentrations (as well as other cations) have been demonstrated to vary with lithology in the 72 

Amazon Basin but effects on discharge-concentration relationships has not been thoroughly 73 

investigated (Stallard and Edmond, 1983). The prevalence of positive slopes in discharge-Ca 74 

concentration relationships in the Amazon and Cerrado is unknown and whether these slopes 75 

result from differences in lithology and soil type or from land use conversion remains uncertain.   76 

Throughout the Amazon and Cerrado regions of Brazil rapid changes in land use and land 77 

cover (INPE, 2006) are altering the hydrological (Moraes et al., 2006; Williams and Melack, 78 

1997) and hydrochemical (Germer et al., 2009; Neill et al., 2001) relationships in these streams 79 

and possibly altering the expected discharge-concentration relationships in these water bodies. 80 

As the landscape of Brazil continues to be altered in the coming decades it will be important to 81 

understand regional differences in stream water chemistry (Richey et al., 1990; Stallard, 1985) 82 

and differences in processes of land-water coupling (Biggs et al., 2002).  Regulatory agencies in 83 

Brazil will be tasked with assessing changes in water quality with continued land use conversion 84 

and will need to be able to interpret concentration differences with lithology, season, or flow 85 

from those changes due to human alterations.  86 

 The objective of the current study is to evaluate slopes (+/-) of discharge-calcium 87 

concentration relationships for previously studied streams and evaluate the influence of year, 88 

season, stream order, vegetation cover, land use, and soil classification on the regression 89 

relationship.  A multilevel linear regression approach is utilized.  90 

 91 
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Methods 92 

 Data from 28 different streams with 51 total sampling stations (i.e., >1 sampling 93 

station/stream) were utilized in this analysis (Table 1).  These streams are situated in eight 94 

different locations and three distinct regions (Figure 1).   Site descriptions and specific details of 95 

stream water sampling and analysis within each watershed are available in references provided in 96 

Table 1.  At all sites investigators identified current land use and existing soil types.  In many 97 

cases stream waters were collected as grab samples on a weekly or biweekly basis, while at 98 

Rancho Grande an automated ISCO sampler was utilized.  A number of sites also had automated 99 

stage height recorders while others recorded stage height during collections.  In all cases waters 100 

were filtered prior to analysis and all sites used ion chromatography for Ca analysis.  Stream Ca 101 

concentration data were available for all sampling stations while discharge was measured in 18 102 

of the streams at 28 sampling stations.  Sampling stretched over 12 yrs (1994, 1996-2007) and all 103 

months of the year (i.e., season).  104 

Stream order and land use were taken from site descriptions.  Land use was comprised of 105 

seven total categories; four within lowland moist tropical forest and three within Cerrado 106 

savannah. Within these two land use classes some watersheds were nearly 100% natural 107 

vegetation (broadleaf forest (Forest) or Cerrado scrub savannah (Cerrado)) while many others 108 

possessed some natural vegetation (34-70% primary or secondary forest or 12-50% Cerrado) 109 

mixed with pastures (19-46%) and agricultural (5-50%) land uses (Fmixed or Cmixed).  Some 110 

lowland forest watersheds in the Amazon had been nearly 100% converted to pasture (Pasture).  111 

Finally, if forested or Cerrado watersheds in either location possessed substantial urban 112 

development they were classified as Furban (1-2%) or Curban (6-27%).   113 
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Vegetation Cover of each watershed was characterized based on the 1988 Mapa de 114 

Vegetacão do Brasil at a 1:5,000,000 scale (http://na.unep.net/datasets/datalist.php). Soil 115 

classification was similarly obtained from the 1981 Mapa de Solos do Brasil at a 1:5,000,000 116 

scale.  Given the available map scales each watershed and thus all the sampling stations were 117 

within a single class. Furthermore, all vegetation cover and soil class designations were generally 118 

consistent with site specific descriptions. 119 

 To analyze individual station regressions where there was sufficient data, simple linear 120 

least square regression was utilized on the log10Ca (in µM) - log10Q (in m
3 
sec

-1
) relationship.  To 121 

analyze the data from all stations simultaneously, a multilevel modeling approach (Congdon, 122 

2001) was utilized to estimate a linear model for prediction of log10Ca.  The main predictor 123 

variable was discharge or log10Q, which was centered by subtracting the mean of the log10Q and 124 

dividing by the range.  If discharge was recorded as zero (n=56) discharge was considered a 125 

missing value.   126 

In the Bayesian multilevel modeling approach, which is nearly identical mathematically 127 

to the classical random effect model (Clayton, 1996), adjustments to the regression relationship 128 

between the dependent variable log10Ca and the independent variable log10Q are incorporated for 129 

covariates at all levels, including observation and higher level groups (i.e., stream order, soil 130 

class, etc). This approach allows for the simultaneous accounting of contextual and individual 131 

variability in the outcome (Congdon, 2001). Adjustments to the linear regression parameters 0 132 

(the intercept) and 1 (the slope) were estimated at all levels.  In contrast, a multivariate 133 

regression using a completely pooled regression model would use each factor as a separate 134 

predictor but would have little chance of satisfactory results using data from such a large region. 135 

Implicit in using a pooled model would be an assumption that a single slope and intercept could 136 

http://na.unep.net/datasets/datalist.php
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describe the relationship everywhere.  Since there is evidence to the contrary, the multilevel 137 

approach utilized allows for some variability in parameters, based on the chosen factors. 138 

In the current analysis, year, season, stream order, land cover, land use, and soil class 139 

were the factors, and each factor had multiple levels (e.g., season has 12 monthly levels).  As 140 

such, the observation model for log10Ca was  141 

  log10(Ca conc. M i ) ~ N( i ,1 ),      (1) 142 

where 1 is the error precision, and 1 =1/
2
.  A uniform prior was used on  1 (Gelman, 143 

2005b). The mean of the normal distribution for observations i (i) was given by a linear 144 

regression which specifies the mean, conditional on the covariate log10Q such that: 145 

i =0 +1* log10Qi ,        (2) 146 

where, 147 

 = 0 + year j + seas k +order l + cov m + use n + soilo    (3) 148 

 = 1 + year j + seas k +order l + cov m + use n + soilo    (4) 149 

and: 150 

i = (0 + year j + seas k +order l + cov m + use n + soilo) +  151 

(1 + year j + seas k +order l + cov m + use n + soilo) * log10Qi             (5) 152 

and j = 1, …, 12 years, k = 1,…,12 seasons (months), l = 1, …,5 stream orders, m = 1,…,7 153 

vegetation covers, n = 1, …,7 land uses, and o = 1,…,7 soil classes.   In the multilevel model of 154 

equation 5, 0 is an overall mean intercept term, while yearj, seask, orderl, covm, usen, 155 

and soilo are adjustments to this overall intercept due to the six factors year, season, order, 156 

cover, use, and soil, respectively.  Similarly, 1 in equation 5 is an overall mean slope for the 157 

log10Q term, while yearj, seask, orderl, covm, usen, and soilo are additive adjustments 158 

to this overall mean according to the same six factors, respectively.   The sample size for each 159 
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level of a factor can vary and will influence the uncertainty within the parameter estimates.  160 

Similarly, the matrix of all combinations of all factors may not be fully represented within the 161 

observational data. 162 

 A non-informative, proper prior distribution was utilized for the regression coefficients, 163 

such that each coefficient was assumed to have a normal distribution, with a separate mean 164 

(and precision (= 1/2
).  The use of a normal distribution for the regression coefficients 165 

stems from the usual assumptions made regarding regression residuals.  Regression coefficients 166 

of a linear model are linear functions of the residuals, and if we assume the residuals are normal 167 

iid, then so are the regression coefficients.  Again, a uniform prior on each  (in units of log10Ca 168 

concentration) was used (Gelman, 2005a), such that  ~ U(0,100), and an initial value of 0 was 169 

used for . 170 

 The model was estimated using a Markov Chain Monte Carlo (MCMC) simulation 171 

following Lamon and Qian (2008).  MCMC is a simulation technique for solving high 172 

dimensional probability distribution problems.  The basic idea of MCMC is to find a numeric 173 

algorithm to make probabilistic inference on random variables with algebraically intractable 174 

probability distributions. The Bayesian Analysis Using Gibbs Sampler (BUGS) project 175 

distributes and supports flexible software for the Bayesian analysis of complex statistical models 176 

using MCMC methods (http://www.mrc-bsu.cam.ac.uk/bugs/ welcome.shtml), and winBUGS is 177 

for use on PC platforms (Spiegelhalter et al., 2003).  The model was initiated by sampling from 178 

the prior distributions for each estimated coefficient and distributions were updated based on the 179 

log-likelihood estimations for the observed and predicted values.  As presented here, a posterior 180 

distribution of all model coefficients was obtained after 100,000 iterations.    181 
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 To evaluate parsimony, the six factor adjustments were compared to other five, four, and 182 

three factor adjustment models (e.g., without season or soil, etc.).  The deviance information 183 

criterion (DIC) is a hierarchical modeling generalization of the Akaike information criterion 184 

(AIC) and the Bayesian information criterion (BIC).  It is particularly useful in Bayesian model 185 

selection problems where the posterior distributions of the models have been obtained by 186 

MCMC simulation, as was done here (Spiegelhalter et al., 2002).   187 

The deviance information criterion was calculated as  188 

          (6) 189 

The deviance D is a measure of model fit analogous to a residual standard deviation.  It is 190 

estimated by the log-likelihood after each iteration and is defined as 191 

        (7) 192 

where  are the data, θare the unknown parameters of the model including , , and , and 193 

 is the likelihood function.  C is a constant that cancels out in comparison of different 194 

models.  The expectation of D 195 

       (8) 196 

is an average of the log-likelihoods and is a measure of how well the model fits the data; the 197 

larger this value the worse is the fit.  The effective number of parameters of the model was 198 

computed as  199 

          (9) 200 

where  is the expectation of θ.  This is a measure of model complexity that is particularly useful 201 

in hierarchical models where the number of independent parameters may be difficult to 202 

determine.  A larger implies that more parameters are being used in the model and thus the 203 

model is better able to fit the data.   204 
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The idea is that models with smaller DIC should be preferred to models with larger DIC.  205 

Models were evaluated both by the value of D, which favors good fit, but also by model 206 

complexity, as measured here by the effective number of parameters .  Since D will tend to 207 

decrease as the number of parameters in a model increases, the  term compensates for this 208 

effect by favoring models with a smaller number of parameters. 209 

 210 

Results 211 

Data Distribution 212 

Across the dataset (n=3155) log10Ca in μM ranged over two orders of magnitude with a 213 

mean of 1.32 (Table 2) and discharge (m
3
 sec

-1
) ranged more broadly covering five orders of 214 

magnitude with a mean log10Q of -1.70 (Table 2).  The data covered 1994 to 2007 with 1994 and 215 

2007 having fewer samples and 2005 the most (Table 3).  All months of the year were well 216 

represented and there were five stream orders in the dataset (1, 2, 3, 5, and 6) with the majority 217 

of data points from 1
st
 or 2

nd
 order streams (Table 3). Urupá and Ji-Paraná@Cacoal are the 5

th
 218 

and 6
th

 order streams, respectively.   219 

There were seven vegetation covers identified from land cover maps with a majority of 220 

samples from dense tropical forest with secondary forest and agricultural activities.  This land 221 

cover class D included all the Paragominas and Igarapé-Açu samples.  Land use as identified by 222 

researchers working within each site (see references in Table 1) was also comprised of seven 223 

classes with forest watersheds under mixed land use being in greatest abundance, which included 224 

many of the same samples identified above under dense tropical forest with secondary forest and 225 

agricultural activities.  Samples classified under Cerrado land uses comprised 17% of the dataset.  226 
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Finally, there were seven soil types classified in the watersheds with the largest number 227 

of sample points represented by Latossolos amarelos distrófico which were predominant in all 228 

the Paragominas streams and Juruena B1 (Table 3). Argissolos vermelho-amarelos eutróficos 229 

were next most common being present in both Rancho Grande and Juruena B2.  Latossolos 230 

vermelho escuro represented most of the Cerrado samples.  Two other soil orders were also 231 

present with Cambissolos identified in two Cerrado watersheds (Pulador and Capão da Onça) 232 

and Neossolos found in a single watershed in the Ji-Paraná basin (Ji-Paraná@Cacoal). 233 

Latossolos, Argissolos, Cambissolos, and Neossolos are generally equivalent to Oxisols, 234 

Ultisols, Inceptisols, and Entisols in US Soil Taxonomy (Soil Survey Staff, 1997).   235 

From a design standpoint, it would be best to have observations for all combinations of 236 

factor values.  In other words, the ideal would be to have samples from every vegetation type, on 237 

every soil type, under all land uses, for every stream order, month and year.  This is seldom the 238 

case for studies using observational data.  The configuration of samples in the matrix of all 239 

possible sampling combinations of the various factors (i.e., yr x month x stream order x land 240 

cover x land use x soil class) is an important attribute of the analysis and can affect the 241 

uncertainty in the estimated beta adjustments.  For example, if there are certain months or soil 242 

types or month x soil type combinations that are not represented by actual samples there is little 243 

information with which to estimate adjustments and there is large uncertainty.  The 244 

multidimensional matrix is difficult to represent in total (i.e., 246,960 combinations from 12 yrs 245 

x 12 months x 5 stream orders x 7 land covers x 7 land uses x 7 soil classes) but coplots can 246 

represent three factors simultaneously (Figure 2).  The coplots indicate that while every 247 

combination of factors is not represented in every month, the data are far from perfect colinearity 248 

among the factors.  In the case of perfect colinearity, the coplots would show one and only one 249 
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factor value on the y axis corresponding to each factor value on the x axis.  The coplots indicate, 250 

however, that soil and land use are well represented in most years and months but are sparser 251 

with stream order or with vegetation cover (Figure 2, coplots by year and cover not shown).  252 

 253 

Discharge-Concentration Regression Analysis 254 

Log10Ca–log10Q relationships for 25 stream stations with sufficient data were analyzed 255 

for each stream-station (Table 4).  Within these individual station regressions for the 25 streams, 256 

13 regressions had slopes significantly different from zero with a clear preponderance having 257 

negative slopes (Figure 3).  Ji-Paraná@Cacoal and IG54-S5 (IG54 at station 5) were the only 258 

stream stations with significant positive slopes.  Of the available stations that had both discharge 259 

and concentration data but slopes not different from zero only the Rancho Grande Forest stream 260 

had large sample size (n=187); all others had <13 samples. 261 

Using various combinations of the available factors to analyze the Log10Ca–log10Q 262 

regression relationship across all streams and stations the multilevel linear model was utilized to 263 

partially pool the data.  Using the available factors (i.e., year, season, order, cover, use, and soil) 264 

the model search results suggest that the complete model is the best (i.e., lowest DIC) at 265 

predicting Ca concentration (Table 5).  A number of the five component models provide good 266 

fits but each is improved by inclusion of the additional adjustment parameter.  Comparison of 267 

some of the 3, 4, or 5 factor models with or without land use or soil class (e.g., season veg soil vs 268 

season veg use) suggest that models including land use were slightly improved.   269 

To investigate the relative contribution of the various factors (i.e., year, season, order, 270 

cover, use, and soil) to the overall variance in the log10Ca concentration response an ANOVA 271 

decomposition analysis was utilized to interpret the multilevel linear model results (Figure 4).  272 
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For the model containing all variables, the graphically based ANOVA decomposition indicates 273 

that variance explained by the model intercept term (Int) exceeds the unexplained variance (s.y.). 274 

In addition, discharge (i.e., FLOWREG) has a relatively large effect on Ca, although over this 275 

broad data set, this slope term is not extremely well defined.  The intercept is affected by stream 276 

order, soil type, land use, and land cover.  Season and year have a small but measureable effect 277 

on the intercept.  In contrast, land cover, season, and year have a larger effect on the log10Ca-278 

log10Q regression slope than do soil type, stream order, or land use (Figure 4).  279 

Individual adjustments for each class of each factor to the mean intercept or slope are 280 

estimated and presented such that their mean is zero (Figure 5 and 6).  In other words, the mean 281 

intercept and slope terms from Equation 5 (0 and 1, respectively) have not been added to the 282 

values in Figures 5 and 6.  Instead the means for 0 and 1 have been noted on the “zero” 283 

(vertical dotted line) in these graphs.  The individual adjustments for the intercept demonstrate 284 

small adjustments for all months and all years (Figure 5a and b).  Within the other factors a 285 

number of adjustments are substantial, for example, 1
st
 order streams, mixed forest (fmixed) land 286 

use, and Cambissolos soil classes (Figure 5d, e, and f).  For these three highlighted classes, 287 

adjustments were negative and thus are a subtraction from the mean value.  The individual 288 

adjustments for each class of each factor for the slope demonstrate some different patterns with 289 

effects being evident for both season and year (Figure 6a and b).  May and April have the largest 290 

positive adjustments and October and November the most negative. Adjustments for 1
st
 order 291 

streams, mixed forests, and Cambissolos are still evident, although positive in this case.  In 292 

addition, a substantial positive adjustment for open tropical forest (vegcode A) is evident. 293 

 The additive effects of the adjustments on the log10Ca–log10Q relationship predicted over 294 

all years and seasons at each station (Figure 7) indicate an overall preponderance of positive 295 
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slopes (i.e., 29 positive, 13 negative).  For locations with individual station regressions (Table 4), 296 

these multilevel predictions are largely consistent except for Ji-Paraná@Cacoal, which had a 297 

positive individual regression slope but is poorly defined in the multilevel model, and for 298 

Taquara, which had a negative individual regression slope at p=0.07 (Table 4) but is predicted to 299 

be positive by the model.  Given the mapping scale used for each stream-station classification, 300 

adjustment factors and thus slopes are similar in some cases for all stations (e.g., Capitão Poço 301 

(CP 1-4)) but may differ if, for example, stream order changes downstream (e.g., Igarapé Sete 302 

(IG7 1-7)).   303 

 304 

Discussion 305 

Discharge-Concentration regressions 306 

This study considers many of the major controls on element supply to streams including 307 

stream hydrology (discharge), stream geomorphology (order), landscape vegetation (land cover), 308 

land-use practices, soil type and interannual variance (year) as they affect discharge-309 

concentration relationships.  Discharge-concentration relationships are element specific but in 310 

the case of rock-derived elements such as Ca there is typically a dilution of rock-derived, 311 

element-enriched groundwaters by surface or stormflow runoff such that concentration decreases 312 

with increasing flow (i.e. negative slope) (Drever, 1997).   This pattern was observed in 313 

regressions by individual station for 11 of the 13 stream datasets available (Figure 2).  The two 314 

streams with positive slopes (IG54-S5 and Ji-Paraná@Cacoal ) were quite distinct from each 315 

other in location (eastern vs western Amazon), stream order (1 vs 6), land cover (dense vs open 316 

forest), and soil classification (Latossolos amarelo distrófico and Argissolos/Neossolos).  In fact, 317 

Ji-Paraná@Cacoal was distinct from all other streams in having Neossolos, which have a high 318 
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sand content.  On the other hand, Ji-Paraná@Cacoal and IG54-S5 are somewhat similar in 319 

having large portions of non-forest land uses (i.e., 30 and 40% pasture, respectively) in their 320 

watersheds with Ji-Paraná@Cacoal possessing ~1% urban land use (Ballester et al., 2003) while 321 

IG54 has ~22% row-crop agriculture (Figueiredo et al., 2010).  These watersheds provide some 322 

support for the proposed hypotheses regarding controlling factors of positive slopes in Ca-323 

discharge relationships (i.e., soils and underlying parent material or land use conversion) with the 324 

Ji-Paraná@Cacoal watershed providing support for both alternatives and IG54-S5 providing 325 

more support for the latter.  326 

 327 

Multilevel Analysis 328 

 Rather than seeking to explain positive or negative slopes to the Ca-discharge regression 329 

within individual streams based on site-specific factors, the multilevel analysis pools the 330 

available data and interprets the relative effect of the various model factors on the overall 331 

regression intercept and slope. The multilevel analysis clearly demonstrates an overall strong 332 

effect of discharge (i.e., log10Q) on Ca concentration (Figure 4) with an overall mean slope that 333 

is negative (Figure 6).  In the intercept of the discharge concentration regression, stream order 334 

explains the greatest amount of variation with 1
st
 order streams requiring a large negative 335 

adjustment (Figure 5d) indicating these streams have lower Ca concentrations.  There are a 336 

limited number of studies that have directly investigated the effect of stream order on stream 337 

water concentration mostly focusing on N and P (Kang et al., 2008).  A few studies have 338 

demonstrated declining N concentration with increasing stream order while the trend for P has 339 

been reversed.  In the Seine River in France Ca concentrations had little variance with increasing 340 

stream order (Meybeck, 1998).  Data presented by Ballester et al. (2003) for the Ji-Paraná  river 341 
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from 3
rd

 to 7
th

 order streams do possess increasing mean Ca concentrations.  Increasing Ca 342 

concentration in larger streams may reflect a greater contribution of groundwater relative to 343 

surface water throughout the year.  344 

Soil type and land use also affect the mean concentration of Ca.  In the current analysis 345 

the scale of soil maps used for classification was quite coarse but was consistent with 346 

observations made within each watershed. The effect of lithology on stream chemical 347 

concentrations, at least within the main tributaries of the Amazon, has been well investigated and 348 

increasing Ca concentration with base-rich bedrock has been well demonstrated (Gibbs, 1967; 349 

Mortatti and Probst, 2003; Richey et al., 1990; Stallard, 1985; Stallard and Edmond, 1987).  At a 350 

smaller scale (<13,000 km
2
) the effect of base –rich soil types on increasing Ca concentration in 351 

the western Amazon has also been demonstrated (Biggs et al., 2002).   In the present analysis, 352 

Argissolos vermelho-amarelo eutrófico (ArgissolosVeAmEut) are in a eutrophic or base rich soil 353 

group but do not require a positive adjustment that would reflect a higher Ca concentration.  The 354 

Latossolos amarelo escuro/Cambissolos association (LatossolosAmEsc/Cambissolos) and the 355 

Argissolos/Neossolos association are classifications that include soils that have weak horizon 356 

development and likely reflect sandy substrates.  As such, these soils should be base poor with 357 

potentially lower Ca concentrations.  In these soils, the Cambissolos type had a negative 358 

adjustment indicating a Ca concentration lower than the mean.     359 

The effects of interannual variation or season on mean Ca concentration are limited for 360 

explaining the variation in mean Ca concentrations across the data set.   A similar pattern was 361 

demonstrated for the main stem Amazon and its tributaries where inter- or intra-annual variance 362 

within a river sampling station was small relative to the variance among the rivers (Mortatti and 363 

Probst, 2003). 364 
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 Interpretation of adjustment parameters on the slope of the discharge-concentration 365 

relationship differs from those discussed above for the intercept term.  In the case of the slope 366 

adjustment, year and season explain much of the variation along with vegetation cover.  Seasonal 367 

adjustments in stream chemical compositions in the form of 12 monthly parameters are 368 

commonly utilized to estimate changes in seasonal processes including discharge (StatSoft, 369 

2010).  Presently, the seasonal adjustments to slope are well defined for each month of the year 370 

with the adjustment being positive in April and May (Figure 6a), which are rainy season months 371 

in all locations other than the Cerrado (Markewitz et al., 2006).   372 

The importance of vegetative cover to the slope adjustment as compared to land use was 373 

unexpected although the vegetative cover classes do include an aspect of land use.  Both the land 374 

cover vegetation classes A (open tropical forest with secondary forest and agricultural activity) 375 

and D (dense tropical forest with secondary forest and agricultural activity) have greater land 376 

cover conversion than classes As (open tropical forest) and Ds (dense tropical forest).  In fact, 377 

the A and D classes both have positive slope adjustments where As and Ds are negative (Figure 378 

6c). This change in adjustment is consistent with the hypothesis of land use conversion 379 

increasing surface runoff concentrations.  Increases in surface runoff with forest conversion to 380 

pasture have been demonstrated in a number of Amazonian locations with responses being most 381 

evident on watersheds < 1 km
2
 (Biggs et al., 2006; Germer et al., 2009; Moraes et al., 2006).  382 

Only in the case of Rancho Grande have concentration-discharge relationships been 383 

quantitatively evaluated with land use change (Germer et al., 2009).  At this site during a number 384 

of storm-event hydrographs Ca concentration increased initially with stormflow runoff in both 385 

the forest and pasture watershed and remained elevated throughout the storm with Ca exports in 386 

storm flow from the pasture being greater. Despite these increased Ca fluxes during the storm 387 
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both the forest and pasture watershed had a net Ca retention relative to inputs.  In the current 388 

analysis, which combined both storm-event and non-event data from Rancho Grande for 389 

analysis, a similar increase in Ca concentration with increasing discharge was not evident (Figure 390 

3). 391 

In the land use classes some similar evidence for an effect of forest conversion is 392 

apparent with the Fmixed, Curban, and Cmixed classes all requiring positive adjustment to slope 393 

(Figure 6e).  On the other hand, the Pasture and Furban adjustment are not positive, although 394 

Furban is very poorly defined (i.e. few samples and large variance).  Of course, there are many 395 

studies that have demonstrated an increase in stream solute concentrations with land use 396 

conversion (Likens and Bormann, 1995; Williams and Melack, 1997) but few that have 397 

specifically observed changes in discharge-concentration relationships with changing land use 398 

(Germer et al., 2009; Markewitz et al., 2001).   399 

The predictive multilevel model indicates that the additive adjustments of all the factors 400 

(year, season, stream order, land cover, land use, and soil class) on log10Ca, in many cases, 401 

results in positive slopes for log10Ca vs log10Q.  The model, of course, reflects the data of which 402 

nearly 1/3 are from IG54.  This stream has a significant positive slope and shares many attributes 403 

(i.e., soil, land use, land cover) with the other streams in the eastern Amazon (i.e., Region C in 404 

Figure 1) and thus influences these predictions.  It is uncertain how representative IG54 is for 405 

this region (Davidson et al., 2010; Figueiredo et al., 2010).  As such, one value of the multilevel 406 

model is knowledge gained about where future sampling should occur to best learn about the 407 

factors and relationships of interest.  Clearly, sampling of additional streams in this rapidly 408 

changing portion of the eastern Amazon would be valuable. 409 

    410 
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Conclusion 411 

 Across the Amazon and Cerrado of Brazil the hydrology of many low order streams is 412 

being impacted by land use conversion as evidenced by studies demonstrating increasing surface 413 

runoff, peak flows, and water yield.  The factors controlling the expected responses in stream 414 

concentration or concentration-discharge relationships, however, are only beginning to be 415 

elucidated.  In the present study the role of year, season, stream order, vegetation cover, land use, 416 

and soil type were investigated for 28 streams.  Ca concentrations and discharge varied across 417 

three and six orders of magnitude, respectively.  In 13 streams with significant concentration-418 

discharge relationships in the individual station regressions, 11 had negative slopes while two 419 

had increasing concentrations with discharge. There were no readily apparent similarities 420 

between these two stream watersheds and competing hypothesis of soil or land use control in 421 

affecting these positive slopes were not well differentiated.  Multilevel analysis of the pooled 422 

data, however, indicated that soils and land use as well as stream order all explained portions of 423 

the variance in mean Ca concentrations while season, year, and vegetative cover explained much 424 

of the variance in the slope of the discharge-concentration regression. The utilized vegetative 425 

cover classes incorporate aspects of land use and thus suggest a larger role for land use in 426 

discharge-concentration slopes than soil classes. 427 

428 
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Table 1.  Brazilian streams utilized for multilevel analysis of discharge-Ca concentration relationships. Sta-is number of stations on each stream. 

Location, State Stream/River Latitude Longitude Yr Sta Order Ppt Basin area 
Land 

Cover 
Land use Soil Ref 

       cm ha     

Ji-Paraná, Rondonia Urupá 11°40' S 61°30' W 99/00 1 5 241 420900 A Furban AVAE 1,2 

“ Ji-Paraná@Cacoal 10°80' S 61°80' W “ 1 6 “ 1755900 A Furban Ag/Ne 

Juruena, Mato Grosso B1 10°28' S 58°28' W 03/06 1 1 258 2 As Forest LAD 3 

 B2 10°25' S 58°46' W “ 1 1 “ 2 As Forest AVAD “ 

Faz. Rancho Grande,  Forest  10°18' S 62°52' W 04/05 1 1 230 1.4 Ds Forest AVAE 4 

Rondônia Pasture  “ “ “ 1 1 “ 0.7 Ds Pasture AVAE “ 

Fazenda Nova Vida, 

Rondônia 

Forest1 10°30' S 62°30' W 94/01 1 2 220 1740 A Forest AVAE 5 

Pasture1 “ “ “ 1 2 “ 720 A Pasture AVAE “ 

Forest2 “ “ “ 1 2 “ 250 A Forest AVAE “ 

Pasture2 “ “ “ 1 1 “ 130 A Pasture AVAE “ 

Paragominas, Pará IG54 2°59' S 47°31' W 96/05 5 2 180 14000 D FMixed LAD 6,7 

 Sete 3°16' S 47°23' W 03/05 7 3 “ 16143 D FMixed LAD 7 

 Pajeú 3°10' S 47°17' W “ 3 2 “ 3246 D FMixed LAD “ 

Capitão Poço, Pará CP1 2°10' S 47°15' W “ 2 1 260 20 D Forest LAD “ 

CP2 “ “ “ 2 1 “ 20 D Forest LAD “ 

Igarapé-Açu, Pará Cumaru 1°11' S 47°34' W 06/07 4 2 251 1850 D FMixed AAD 8 

 Pachibá 1°10' S 47°37' W “ 2 1 “ 323 D FMixed AAD “ 
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 São João 1°10' S 47°30' W “ 2 1 “ 570 D FMixed AAD “ 

Brasilia, Distrito  Roncador 15°56' S 47°53' W 98/00 1 3 147 2000 Sa Cerrado LVE 9 

Federal Pitoco 15°55' S 47°52' W 05/06 2 1 138 80 Sa Cerrado LVE 10 

 Taquara 15°57' S 47°53' W “ 2 1 “ 150 Sa Cerrado LVE “ 

 Vereda Grande 15°32' S 47°34' W “ 1 1 “ 3850 Sa Cerrado LVE “ 

 Estanislau 15°47' S 47°37' W “ 2 1 “ 390 S Cmixed LVE “ 

 Barreiro do Mato 15°48' S 47°36' W “ 1 1 “ 250 S Cmixed LVE “ 

 Capão da Onça 15°38' S 48°10' W “ 1 1 “ 720 S Cmixed LVE/C “ 

 Pulador 15°40' S 48°1' W “ 1 1 “ 170 S Curban LVE/C “ 

 Mestre D’Armas 15°36' S 47°40' W “ 1 1 “ 5740 Sa Curban LVE “ 

 Atoleiro 15°37' S 47°38' W “ 1 1 “ 2030 Sa Curban LVE “ 

Furban – forest watershed intermixed with urban areas 

Fmixed – forest watershed intermixed with pasture and agricultural areas 

Curban – cerrado watershed intermixed with urban areas 

Cmixed-cerrado watershed intermixed with pasture and agricultural areas 

A- Floresta ombrofila aberta (Floresta de transição) – Vegetação secundária e Atividades agrícolas (Open tropical rainforest (transition 

forest) – secondary vegetation and agricultural activities). 

As- Floresta ombrófila aberta (Floresta de transição) – Submontana (Open tropical rainforest (transition forest) – sub-mountain). 

ON-Áreas de tensão ecologica (contatos entre tipos de vegetação)-Floresta Ombrófila-Floresta Estacional (Ecotone {contact between 

two vegetation types}-tropical rainforest-seasonal forest. 

Ds- Floresta ombrófila densa-submontana (Dense tropical forest – submountain). 
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D- Floresta ombrófila densa- Vegetação secundária e Atividades agrícolas (Dense tropical forest –secondary vegetation and 

agricultural activities). 

Sa- Savana-Arbórea Aberta (Savannah-open woodlands). 

S-  Savana- Atividades agrícolas (Savannah –agricultural activities). 

LAD – Latossolos amarelo distrófico (distrophic yellow latosol) 

LVE- Latossolos vermelho escuro (dark red latosol) 

LVE/C – Latossols vermelho escuro/Cambissolos (dark red latosol/cambisol) 

AVAE –Argissolos vermelho-amarelo eutrófico (eutrophic red yellow argisol) 

AAD-Argissolos amarelo distrófico (distrophic yellow argisol) 

AVAD - Argissolos vermelho-amarelo distrófico (distrophic red yellow argisol) 

Ag/Ne – Argissolos/Neossolos (argisol/neosol) 

1 (Krusche – unpublished data); 2 (Ballester et al., 2003); 3 (Johnson et al., 2006); 4 (Chaves et al., 2008); 5 (Neill et al., 2001); 6 

(Markewitz et al., 2001); 7(Figueiredo et al., 2010) ; 8 (Figueiredo - unpublished data); 9 (Markewitz et al., 2006); 10 (Silva et al., In 

press)
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Table 2.  Descriptive statistics for Log10Ca concentration and Log10Q for 28 streams in Brazil 

sampled between 1994 and 2007.  Total sample size is 3155. 

 

Statistic log10 Ca log10Q 

 µM m
3
 sec

-1
 

n 2734 2062 

Minimum -0.432 -6.00 

1
st
 Quartile 1.08 -3.243 

Median 1.38 -1.200 

Mean 1.32 -1.707 

3
rd

 Quartile 1.64 -0.072 

Max 2.43 3.238 

Missing values 421 1093 
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Table 3.  Sample size available for multilevel analysis from 28 streams in Brazil sampled between 1994 and 2007. 

Year  Month  Stream Order  Land Use  Land Cover  Soil Class  

ID N  ID N  ID N  ID N  ID N  ID N 

1994 21  1 291  1 1502  Forest 712  A 276  LAD 1336 

1996 124  2 450  2 1407  Fmixed 1224  As 83  LVE 489 

1997 271  3 366  3 198  Furban 48  D 1389  LVE/C 42 

1998 340  4 206  5 24  Pasture 640  Ds 792  AVAE 1044 

1999 217  5 181  6 24  Cerrado 350  ON 84  AAD 136 

2000 148  6 213     Cmixed 105  S 126  AVAD 84 

2001 73  7 172     Curban 76  Sa 405  Ag/Ne 24 

2003 171  8 203              

2004 589  9 273              

2005 820  10 241              

2006 305  11 385              

2007 40  12 172              

Furban – forest watershed intermixed with urban areas 

Fmixed – forest watershed intermixed with pasture and agricultural areas 

Curban – cerrado watershed intermixed with urban areas 

Cmixed-cerrado watershed intermixed with pasture and agricultural areas 

A- Floresta ombrófila aberta (Floresta de transição) – Vegetação secundária e Atividades agrícolas (Open tropical rainforest 

(transition forest) – secondary vegetation and agricultural activities). 

As- Floresta ombrófila aberta (Floresta de transição) – Submontana (Open tropical rainforest (transition forest) – sub-

mountain). 
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ON-Áreas de tensão ecologica (contatos entre tipos de vegetação)-Floresta Ombrófila-Floresta Estacional (Ecotone {contact 

between two vegetation types}-tropical rainforest-seasonal forest. 

Ds- Floresta ombrófila densa-submontana (Dense tropical forest – submountain). 

D- Floresta ombrófila densa- Vegetação secundária e Atividades agrícolas (Dense tropical forest –secondary vegetation and 

agricultural activities). 

Sa- Savana-Arbórea Aberta (Savannah-open woodlands). 

S-  Savana- Atividades agrícolas (Savannah –agricultural activities). 

LAD – Latossolos amarelo distrófico (distrophic yellow latosol) 

LVE- Latossolos vermelho escuro (dark red latosol) 

LVE/C – Latossols vermelho escuro/Cambissolos (dark red latosol/cambisol) 

AVAE –Argissolos vermelho-amarelo eutrófico (eutrophic red yellow argisol) 

AAD-Argissolos amarelo distrófico (distrophic yellow argisol) 

AVAD - Argissolos vermelho-amarelo distrófico (distrophic red yellow argisol) 

Ag/Ne – Argissolos/Neossolos (argisol/neosol) 
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Table 4.  Linear regression statistics for Log10Q (m
3
 sec

-1
) vs Log10Ca (μM) for 

individual stream stations.  Statistics include adjusted R
2
, y intercept (y0) and 

standard error (SEy0), slope and standard error (SEslope), p-values for tests of y-

intercept (Py0) and slope (Pslope) different from zero. 

 

ID Adj. R
2
 y0 SEyo Slope SEslope Pyo Pslope 

Urupá 0.50 2.550 0.105 -0.186 0.038 0.0001 0.0001 

Ji-ParanáCa  0.80 1.019 0.067 0.262 0.027 0.0001 0.0001 

JuruenaB1 0.59 -1.043 0.251 -0.713 0.072 0.0001 0.0001 

JuruenaB2 0.79 -0.253 0.096 -0.719 0.030 0.0104 0.0001 

RGForest 0.00 1.446 0.076 -0.008 0.017 0.0001 0.6621 

RGPasture 0.02 1.302 0.024 -0.027 0.007 0.0001 0.0002 

FazNVFor1 0.62 1.779 0.015 -0.122 0.014 0.0001 0.0001 

FazNVPas1 0.23 1.696 0.046 -0.152 0.040 0.0001 0.0004 

FazNVFor2 0.38 1.880 0.030 -0.076 0.019 0.0001 0.0004 

FazNVPas2 0.18 1.714 0.080 -0.158 0.059 0.0001 0.0119 

IG54-S5 0.20 1.282 0.010 0.996 0.086 0.0001 0.0001 

IG54-S3 0.00 1.466 0.100 0.296 0.279 0.0001 0.3139 

Sete-S2 0.08 0.691 0.340 -1.684 1.073 0.0691 0.1477 

Sete-S4 0.11 2.465 0.721 -2.915 1.711 0.0066 0.1192 

Sete-S5 0.03 0.676 0.419 1.883 1.553 0.1381 0.2533 

Sete-S6 0.00 1.673 0.717 -1.204 1.585 0.0445 0.4670 

Pajeú-S2 0.00 1.065 0.304 0.183 0.392 0.0057 0.6504 

CumaruA 0.00 0.549 0.690 -0.024 0.127 0.4170 0.8512 

CumaruB 0.00 0.833 0.700 0.086 0.132 0.2593 0.5290 

CumaruC 0.00 1.160 0.129 -0.037 0.038 0.0001 0.3579 

CumaruD 0.67 0.169 0.230 -0.337 0.073 0.4799 0.0013 

Roncador 0.22 1.426 0.044 -0.342 0.043 0.0001 0.0001 

Taquara 0.16 -3.850 2.164 -2.908 1.483 0.0970 0.0700 

Pachibá 0.00 0.818 0.367 0.037 0.093 0.0546 0.6947 

São João 0.00 0.893 0.163 0.015 0.043 0.0028 0.7501 
 

       



32 

 

 

Table 5: Results of the model search within the ANOVA models using year, season, 

stream order, vegetation cover, land use, and soil type. DIC is an estimate of expected 

predictive error (lower including more negative deviance is better).  Dbar is a Bayesian 

measure of fit, while pD (pD = Dbar-Dhat) is the estimated number of independent 

parameters (complexity) of the multilevel model.  C is an indicator for convergence; M 

is an indicator that Markov chains have mixed during simulation. 

Model   Dbar        Dhat pD DIC C                      M 

Season Veg Soil 1581.99      1445.78 136.21 1718.20   1 0 

Season Veg Use 1473.75      1269.96 203.79 1677.53 1 1 

Year Season Order  726.960       619.82 107.140 834.100   0 0 

Year Season Soil  386.899     189.674 197.225  584.123 1 1 

Season Veg Use Soil 1431.81      1294.59 137.22 1569.03   1 0 

Year Season Use Soil   -372.663  -722.334 349.671  -22.992  1 1 

Year Season Order Soil -280.310  -609.287 328.976   48.666  1 0 

Year Season Order Use   470.518      215.02 255.497  726.015 1 1 

Year Season Order Veg   -607.721  -1090.06 482.338 -125.383 1 1 

Year Season Veg Soil       3.994     -260.95 264.942  268.936   1 1 

Year Season Veg Use  -581.756     -893.92 312.166 -269.589  0 0 

Year Season Order Veg Soil -688.375  -1157.03 468.654 -219.721 1 0 

Year Season Order Veg Use  -835.041  -1296.67 461.634 -373.407 1 1 

Year Season Order Use Soil -560.757    -610.80 50.042 -510.714  0 0 

Year Season Veg Use Soil  -746.277     -962.58 216.302 -529.976  1 1 

Year Season Order Veg Use Soil  -991.330  - 1237.39 246.062 -745.268  1 1 
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Figure 1.  Locations of streams in the Amazon and Cerrado of Brazil.  Underlying map is 

RADAM soil classifications.  1-Urupá; 2-Ji-Paraná@Cacoal ; 3-B1; 4-B2; 5,6-Rancho Grande; 

7-10 Nova Vida; 11-IG54; 12-Sete; 13-Pajeú; 14,15 Capitão Poço; 16-Cumaru; 17-Pachibá; 18-

São João; 19-Roncador; 20-Pitoco; 21-Taquara; 22-Vereda Grande; 23-Estanislau; 24-Barreiro 

do Mato; 25-Capão do Onça; 26-Pulador; 27-Mestre D’Armas; 28-Atoleiro.  
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Figure 2. Coplots for landuse and soil given A) season (i.e., month) or B) stream order.  Circles indicate presence of data 

corresponding to each soil type and land use, for each level of the marginal variable (i.e., season or order).  Ideal would be a 

representative of each soil type in each land use for each season or stream order.  Each month in season is well represented although 

July is missing soil type 7 (made up of land uses 2 and 3 in other months) and land use number 1 (Cerrado) is all in soil type 6, for all 

months.  Stream order 1, 2, and 3 are well represented but order 5 and 6 are single soil and land use combinations. 

1
2

3
4

5
6

7

1 2 3 4 5 6 7 1 2 3 4 5 6 7

1
2

3
4

5
6

7

1 2 3 4 5 6 7

1
2

3
4

5
6

7

1 2 3 4 5 6 7

soil

la
n

d
u

s
e

1
2

3
4

5
6

7
8

9
10

11
12

Given : season

Jan Apr Mar Feb 

Aug Jul Jun May 

Sep Oct Nov Dec 

1
2

3
4

5
6

7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1
2

3
4

5
6

7

soil

la
n

d
u

s
e

1

2

3

5

6

Given : order

1
st
 2

nd
 3

rd
 

6
th

 5
th

 



35 

 

  

Urupa

Ji-Parana

2.0 2.2 2.4 2.6 2.8 3.0 3.2

1.6

1.8

2.0

2.2

2.4
Cacoal

Ji-Parana

2.0 2.2 2.4 2.6 2.8 3.0

Nova Vida 

Forest1

-3 -2 -1 0 1
1.2

1.6

2.0

2.4
Nova Vida

Forest 2

-3 -2 -1 0

Nova Vida 

Pasture1

-3 -2 -1 0

Nova Vida 

Pasture2

-3 -2 -1 0

Rancho Grande

Pasture

-6 -5 -4 -3 -2 -1

-0.5

0.5

1.5

2.5

Igarape 54

Station 5

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
0.0

0.5

1.0

1.5

2.0

2.5

Corrego Roncador

Brasilia

-1.4 -1.2 -1.0 -0.8 -0.6 -0.4

1.0

1.4

1.8

2.2

2.6
Taquara

-1.55 -1.50 -1.45 -1.40 -1.35
-0.4

0.0

0.4

0.8

1.2

Igarape Cumaru

Station D

-3.8 -3.6 -3.4 -3.2 -3.0 -2.8 -2.6
1.0

1.1

1.2

1.3

1.4

1.5

Juruena B1

-4.5 -4.0 -3.5 -3.0

1.2

1.6

2.0

2.4

Juruena B2

X Data

-4.5 -4.0 -3.5 -3.0 -2.5

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
L

o
g

1
0
C

a
 (












































-----------------------------------------Log
10

Q (m3 sec-1)------------------------------------------



36 

 

Figure 3. Log10Ca (µM) vs Log10Q (m
3
 sec

-1
) relationship for 13 streams in Brazil.  Solid lines 

are least square linear regressions and dashed lines are upper and lower 95% confidence 

intervals.  Data were collected between 1996 and 2005. 
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Figure 4 – ANOVA analysis for main effects on Log10Ca concentration (n=3155).  The mean of 

the box plots represents the proportion of the standard deviation explained by each component 

and the distribution represents how well the effect is determined.  The upper boxes 

(s.flow(factor)) represent the decomposition of the variance explained by the slope of the 

discharge-Ca regression slope (s.FLOWREG) and the lower boxes (s.(factors)) represent the 

decomposition of the variance in the intercept term (s.INT).  The s.y. component identifies the 

unexplained variance.  
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Figure 5 – Intercept adjustments associated with the log10Q regression.  The overall mean intercept is 

identified by the dotted line in each panel.  A-Open tropical rainforest with secondary vegetation and 

agricultural activities); As-Open tropical rainforest  – sub-mountain; ON-Ecotone tropical rainforest-

seasonal forest; Ds-Dense tropical forest – submountain; D-Dense tropical forest –secondary vegetation and 

agricultural activities; Sa-Savannah-open woodlands; S-Savannah –agricultural activities). LAD – 

Latossolos amarelo distrófico; LVE- Latossolos vermelho escuro;  LVE/C – Latossolos vermelho 

escuro/Cambissolos; AVAE –Argissolos vermelho-amarelo eutrófico; AAD-Argissolos amarelo distrófico; 

AVAD - Argissolos vermelho-amarelo distrófico; Ag/Ne – Argissolos/Neossolos.  
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Figure 6 - Slope adjustments associated with the log10Flow regression.  The overall mean Slope is 

identified by the dotted line in each panel. A-Open tropical rainforest with secondary vegetation and 

agricultural activities); As-Open tropical rainforest  – sub-mountain; ON-Ecotone tropical rainforest-

seasonal forest; Ds-Dense tropical forest – submountain; D-Dense tropical forest –secondary vegetation 

and agricultural activities; Sa-Savannah-open woodlands; S-Savannah –agricultural activities). LAD – 

Latossolos amarelo distrófico; LVE- Latossolos vermelho escuro;  LVE/C – Latossols vermelho 

escuro/Cambissolos; AVAE –Argissolos vermelho-amarelo eutrófico; AAD-Argissolos amarelo 

distrófico; AVAD - Argissolos vermelho-amarelo distrófico; Ag/Ne – Argissolos/Neossolos.  
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Figure 7. The log10Ca vs log10Q slopes for all stream stations predicted over all years from a 

multilevel model including adjustments for year, season, stream order, land cover, land use, and 

soil class. URU1-Urupa; Taq-Taquara; Ronc-Roncador; RGPAS-Rancho Grande Pasture; 

RGFOR-Rancho Grande Forest; Pul-Pulador; Pit-Pitoco; NVPAS-Nova Vida Pasture; NVFOR-

Nova Vida Forest; MDA-Mestre D’ Armas; IGSJ-São João; IGPA-Pachiba; IGP-Pajeu; IGCU-

Camaru; IG7-Sete; IG54-Cinquenta e quarto; FD-Fazenda Dimas; CP-Capitão Poço; CO-Capão 

de Onça; Chac-Chacara; Cac-Ji-Paraná@Cacoal; B-Juruena; Atol-Atoliero; AE-Aguas 

Emendadas.  Letters or numbers after abbreviations indicate stations within the stream.  


