343 research outputs found

    X-ray Raman scattering study of aligned polyfluorene

    Full text link
    We present a non-resonant inelastic x-ray scattering study at the carbon K-edge on aligned poly[9,9-bis(2-ethylhexyl)-fluorene-2,7-diyl] and show that the x-ray Raman scattering technique can be used as a practical alternative to x-ray absorption measurements. We demonstrate that this novel method can be applied to studies on aligned π\pi-conjugated polymers complementing diffraction and optical studies. Combining the experimental data and a very recently proposed theoretical scheme we demonstrate a unique property of x-ray Raman scattering by performing the symmetry decomposition on the density of unoccupied electronic states into ss- and pp-type symmetry contributions.Comment: 19 pages, 8 figure

    Design and construction of an optical test bed for LISA imaging systems and tilt-to-length coupling

    Get PDF
    The laser interferometer space antenna (LISA) is a future space-based interferometric gravitational-wave detector consisting of three spacecraft in a triangular configuration. The interferometric measurements of path length changes between satellites will be performed on optical benches in the satellites. Angular misalignments of the interfering beams couple into the length measurement and represent a significant noise source. Imaging systems will be used to reduce this tilt-to-length coupling. We designed and constructed an optical test bed to experimentally investigate tilt-to-length coupling. It consists of two separate structures, a minimal optical bench and a telescope simulator. The minimal optical bench comprises the science interferometer where the local laser is interfered with light from a remote spacecraft. In our experiment, a simulated version of this received beam is generated on the telescope simulator. The telescope simulator provides a tilting beam, a reference interferometer and an additional static beam as a phase reference. The tilting beam can either be a flat-top beam or a Gaussian beam. We avoid tilt-to-length coupling in the reference interferometer by using a small photo diode placed at an image of the beam rotation point. We show that the test bed is operational with an initial measurement of tilt-to-length coupling without imaging systems. Furthermore, we show the design of two different imaging systems whose performance will be investigated in future experiments

    Experimental Demonstration of Reduced Tilt-to-length Coupling by Using Imaging Systems in Precision Interferometers

    Get PDF
    Angular misalignment of one of the interfering beams in laser interferometers can couple into the interferometric length measurement and is called tilt-to-length (TTL) coupling in the following. In the noise budget of the planned space-based gravitational-wave detector evolved Laser Interferometer Space Antenna (eLISA) [1, 2] TTL coupling is the second largest noise source after shot noise [3

    Laboratory evolution of Pyrococcus furiosus alcohol dehydrogenase to improve the production of (2S,5S)-hexanediol at moderate temperatures

    Get PDF
    There is considerable interest in the use of enantioselective alcohol dehydrogenases for the production of enantio- and diastereomerically pure diols, which are important building blocks for pharmaceuticals, agrochemicals and fine chemicals. Due to the need for a stable alcohol dehydrogenase with activity at low-temperature process conditions (30°C) for the production of (2S,5S)-hexanediol, we have improved an alcohol dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus (AdhA). A stable S-selective alcohol dehydrogenase with increased activity at 30°C on the substrate 2,5-hexanedione was generated by laboratory evolution on the thermostable alcohol dehydrogenase AdhA. One round of error-prone PCR and screening of ∼1,500 mutants was performed. The maximum specific activity of the best performing mutant with 2,5-hexanedione at 30°C was tenfold higher compared to the activity of the wild-type enzyme. A 3D-model of AdhA revealed that this mutant has one mutation in the well-conserved NADP(H)-binding site (R11L), and a second mutation (A180V) near the catalytic and highly conserved threonine at position 183

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Tuning intermolecular interactions in di-octyl substituted polyfluorene via hydrostatic pressure

    Get PDF
    Polyfluorenes (PFs) represent a unique class of poly para-phenylene based blue-emitting polymers with intriguing structure-property relationships. Slight variations in the choice of functionalizing side chains result in dramatic differences in the inter- and intra-chain structures in PFs. We present photoluminescence (PL) and Raman scattering studies of bulk samples and thin films of dioctyl-substituted PF (PF8) under hydrostatic pressure. The bulk sample was further thermally annealed at 1.9 GPa. The PL vibronics of the as-is sample red-shift at an average rate of 26 meV/GPa. The thermally annealed sample is characterized by at least two phase transitions at 1.1 GPa and 4.2 GPa, each of which has a different pressure coefficient for PL vibronics. The Huang-Rhys factor, a measure of the electron-phonon interaction, is found to increase with increasing pressures signaling a higher geometric relaxation of the electronic states. The Raman peaks harden with increasing pressures; the intra-ring C-C stretch frequency at 1600 cm1^{-1} has a pressure coefficient of 7.2 cm1^{-1}/GPa and exhibits asymmetric line shapes at higher pressures, characteristic of a strong electron-phonon interaction. The optical properties of PF8 under high pressure are further contrasted with those of a branched side chain substituted PF.Comment: 22 pages, 10 figure

    Unlocking the potential of weberite-type metal fluorides in electrochemical energy storage

    Get PDF
    Sodium-ion batteries (NIBs) are a front-runner among the alternative battery technologies suggested for substituting the state-of-the-art lithium-ion batteries (LIBs). The specific energy of Na-ion batteries is significantly lower than that of LIBs, which is mainly due to the lower operating potentials and higher molecular weight of sodium insertion cathode materials. To compete with the high energy density of LIBs, high voltage cathode materials are required for NIBs. Here we report a theoretical investigation on weberite-type sodium metal fluorides (SMFs), a new class of high voltage and high energy density materials which are so far unexplored as cathode materials for NIBs. The weberite structure type is highly favorable for sodium-containing transition metal fluorides, with a large variety of transition metal combinations (M, M’) adopting the corresponding Na2MM’F7 structure. A series of known and hypothetical compounds with weberite-type structure were computationally investigated to evaluate their potential as cathode materials for NIBs. Weberite-type SMFs show two-dimensional pathways for Na+ diffusion with surprisingly low activation barriers. The high energy density combined with low diffusion barriers for Na+ makes this type of compounds promising candidates for cathode materials in NIBs

    Deciphering the Arginine-Binding Preferences at the Substrate-Binding Groove of Ser/Thr Kinases by Computational Surface Mapping

    Get PDF
    Protein kinases are key signaling enzymes that catalyze the transfer of γ-phosphate from an ATP molecule to a phospho-accepting residue in the substrate. Unraveling the molecular features that govern the preference of kinases for particular residues flanking the phosphoacceptor is important for understanding kinase specificities toward their substrates and for designing substrate-like peptidic inhibitors. We applied ANCHORSmap, a new fragment-based computational approach for mapping amino acid side chains on protein surfaces, to predict and characterize the preference of kinases toward Arginine binding. We focus on positions P−2 and P−5, commonly occupied by Arginine (Arg) in substrates of basophilic Ser/Thr kinases. The method accurately identified all the P−2/P−5 Arg binding sites previously determined by X-ray crystallography and produced Arg preferences that corresponded to those experimentally found by peptide arrays. The predicted Arg-binding positions and their associated pockets were analyzed in terms of shape, physicochemical properties, amino acid composition, and in-silico mutagenesis, providing structural rationalization for previously unexplained trends in kinase preferences toward Arg moieties. This methodology sheds light on several kinases that were described in the literature as having non-trivial preferences for Arg, and provides some surprising departures from the prevailing views regarding residues that determine kinase specificity toward Arg. In particular, we found that the preference for a P−5 Arg is not necessarily governed by the 170/230 acidic pair, as was previously assumed, but by several different pairs of acidic residues, selected from positions 133, 169, and 230 (PKA numbering). The acidic residue at position 230 serves as a pivotal element in recognizing Arg from both the P−2 and P−5 positions
    corecore