378 research outputs found

    Corticomotor excitability during precision motor tasks

    Get PDF
    The aim of this preliminary study was to investigate motor cortex (cortical) excitability between a similar fine visuomotor task of varying difficulty. Ten healthy adults (three female, seven male; 20—45 years of age) participated in the study. Participants were instructed to perform a fine visuomotor task by statically abducting their first index finger against a force transducer which displayed the level of force (represented as a marker) on a computer monitor. This marker was to be maintained between two stationary bars, also displayed on the computer monitor. The level of difficulty was increased by amplifying the position of the marker, making the task more difficult to control. Cortical measures of motor evoked potential (MEP) and silent period (SP) duration in first dorsal interosseous (FDI) muscle were obtained using transcranial magnetic stimulation (TMS) while the participant maintained the ‘‘easy’’ or ‘‘difficult’’ static task. An 11.8% increase in MEP amplitude was observed when subjects undertook the ‘‘difficult’’ task, but no differences in MEP latency or SP duration. The results from this preliminary study suggest that cortical excitability increases reflect the demand required to perform tasks requiring greater precision with suggestions for further research discussed

    Mapping the cortical representation of the lumbar paravertebral muscles

    Get PDF
    Objective: The aim of this study was to map the cortical representation of the lumbar spine paravertebral (LP) muscles in healthy subjects. Methods: Transcranial magnetic stimulation (TMS) was employed to map the cortical representations of the LP muscles at two sites. Stimuli were applied to points on a grid representing scalp positions. The amplitude of motor evoked potentials (n = 6) was averaged for each position. Results: The optimal site for evoking responses in the contralateral LP muscles was situated 1 cm anterior and 4 cm lateral to the vertex. Ipsilateral responses were evoked from sites lateral to the optimal site for evoking contralateral responses. Contralateral responses were also obtained from areas anterior to the optimal site. Conclusions: Maps of these muscles can be produced. The results suggest discrete contra- and ipsilateral cortical projections. Anterior sites at which excitation can be evoked may indicate projections arising in the SMA are involved. Significance: This study provides normative data regarding the cortical representation of the paravertebral muscles and provides a technique for evaluating cortical motor plasticity in patients presenting with spinal pathologies

    Non-Invasive Brain Stimulation in Conversion (Functional) Weakness and Paralysis: A Systematic Review and Future Perspectives

    Get PDF
    Conversion (functional) limb weakness or paralysis (FW) can be a debilitating condition, and often causes significant distress or impairment in social, occupational, or other important areas of functioning. Most treatment concepts are multi-disciplinary, containing a behavioral approach combined with a motor learning program. Non-invasive brain stimulation (NIBS) methods, such as electroconvulsive therapy (ECT), and transcranial magnetic stimulation (TMS) have been used in the past few decades to treat FW. In order to identify all published studies that used NIBS methods such as ECT, TMS and transcranial direct current stimulation (tDCS) for treating FW patients a systematic review of the literature was conducted in PubMed and Web of Science. In a second step, narratives were used to retrospectively determine nominal CGI-I (Clinical Global Impression scale–Improvement) scores to describe approximate changes of FW symptoms. We identified two articles (case reports) with ECT used for treatment of FW, five with TMS with a total of 86 patients, and none with tDCS. In 75 out of 86 patients treated with repetitive (r)TMS a nominal CGI-I score could be estimated, showing a satisfactory short-term improvement. Fifty-four out of seventy-five identified patients (72%) had a CGI-I score of 1 (very much improved), 13 (17%) a score of 2 (much improved), 5 (7%) a score of 3 (minimally improved), and 3 (5%) remained unchanged (CGI-I = 4). In no case did patients worsen after rTMS treatment, and no severe adverse effects were reported. At follow-up, symptom improvement was not quantifiable in terms of CGI-I for the majority of the cases. Patients treated with ECT showed a satisfactory short-term response (CGI-I = 2), but deterioration of FW symptoms at follow-up. Despite the predominantly positive results presented in the identified studies and satisfactory levels of efficacy measured with retrospectively calculated nominal CGI-I scores, any assumption of a beneficial effect of NIBS in FW has to be seen with caution, as only few articles could be retrieved and their quality was mostly poor. This article elucidates how NIBS might help in FW and gives recommendations for future study designs using NIBS in this condition

    Multi-trait mimicry of ants by a parasitoid wasp

    Get PDF
    Many animals avoid attack from predators through toxicity or the emission of repellent chemicals. Defensive mimicry has evolved in many species to deceive shared predators, for instance through colouration and other morphological adaptations, but mimicry hardly ever seems to involve multi-trait similarities. Here we report on a wingless parasitoid wasp that exhibits a full spectrum of traits mimicing ants and affording protection against ground-dwelling predators (wolf spiders). In body size, morphology and movement Gelis agilis (Ichneumonidae) is highly similar to the black garden ant (Lasius niger) that shares the same habitat. When threatened, G. agilis also emits a volatile chemical that is similar to an ant-produced chemical that repels spiders. In bioassays with L. niger, G. agilis, G. areator, Cotesia glomerata and Drosophila melanogaster, ants and G. agilis were virtually immune to spider attack, in contrast the other species were not. Volatile characterisation with gas chromatography-mass spectrometry identified G. agilis emissions as 6-methyl-5-hepten-2-one, a known insect defence semiochemical that acts as an alarm pheromone in ants. We argue that multi-trait mimicry, as observed in G. agilis, might be much more common among animals than currently realized

    Prognostic value of cortically induced motor evoked activity by TMS in chronic stroke: caveats from a very revealing single clinical case

    Get PDF
    Background: We report the case of a chronic stroke patient (62 months after injury) showing total absence of motor activity evoked by transcranial magnetic stimulation (TMS) of spared regions of the left motor cortex, but near-to-complete recovery of motor abilities in the affected hand. Case presentation: Multimodal investigations included detailed TMS based motor mapping, motor evoked potentials (MEP), and Cortical Silent period (CSP) as well as functional magnetic resonance imaging (fMRI) of motor activity, MRI based lesion analysis and Diffusion Tensor Imaging (DTI) Tractography of corticospinal tract (CST). Anatomical analysis revealed a left hemisphere subinsular lesion interrupting the descending left CST at the level of the internal capsule. The absence of MEPs after intense TMS pulses to the ipsilesional M1, and the reversible suppression of ongoing electromyographic (EMG) activity (indexed by CSP) demonstrate a weak modulation of subcortical systems by the ipsilesional left frontal cortex, but an inability to induce efficient descending volleys from those cortical locations to right hand and forearm muscles. Functional MRI recordings under grasping and finger tapping patterns involving the affected hand showed slight signs of subcortical recruitment, as compared to the unaffected hand and hemisphere, as well as the expected cortical activations. Conclusions: The potential sources of motor voluntary activity for the affected hand in absence of MEPs are discussed. We conclude that multimodal analysis may contribute to a more accurate prognosis of stroke patients

    Quantifying kinematics of purposeful movements to real, imagined, or absent functional objects: Implications for modelling trajectories for robot-assisted ADL tasks**

    Get PDF
    BACKGROUND: Robotic therapy is at the forefront of stroke rehabilitation. The Activities of Daily Living Exercise Robot (ADLER) was developed to improve carryover of gains after training by combining the benefits of Activities of Daily Living (ADL) training (motivation and functional task practice with real objects), with the benefits of robot mediated therapy (repeatability and reliability). In combining these two therapy techniques, we seek to develop a new model for trajectory generation that will support functional movements to real objects during robot training. We studied natural movements to real objects and report on how initial reaching movements are affected by real objects and how these movements deviate from the straight line paths predicted by the minimum jerk model, typically used to generate trajectories in robot training environments. We highlight key issues that to be considered in modelling natural trajectories. METHODS: Movement data was collected as eight normal subjects completed ADLs such as drinking and eating. Three conditions were considered: object absent, imagined, and present. This data was compared to predicted trajectories generated from implementing the minimum jerk model. The deviations in both the plane of the table (XY) and the saggital plane of torso (XZ) were examined for both reaches to a cup and to a spoon. Velocity profiles and curvature were also quantified for all trajectories. RESULTS: We hypothesized that movements performed with functional task constraints and objects would deviate from the minimum jerk trajectory model more than those performed under imaginary or object absent conditions. Trajectory deviations from the predicted minimum jerk model for these reaches were shown to depend on three variables: object presence, object orientation, and plane of movement. When subjects completed the cup reach their movements were more curved than for the spoon reach. The object present condition for the cup reach showed more curvature than in the object imagined and absent conditions. Curvature in the XZ plane of movement was greater than curvature in the XY plane for all movements. CONCLUSION: The implemented minimum jerk trajectory model was not adequate for generating functional trajectories for these ADLs. The deviations caused by object affordance and functional task constraints must be accounted for in order to allow subjects to perform functional task training in robotic therapy environments. The major differences that we have highlighted include trajectory dependence on: object presence, object orientation, and the plane of movement. With the ability to practice ADLs on the ADLER environment we hope to provide patients with a therapy paradigm that will produce optimal results and recovery
    corecore