6,852 research outputs found

    Polarization-Engineering in III-V Nitride Heterostructures: New Opportunities For Device Design

    Full text link
    The role of spontaneous and piezoelectric polarization in III-V nitride heterostructure devices is discussed. Problems as well as opportunities in incorporating polarization in abrupt and graded heterojunctions composed of binary, ternary, and quaternary nitrides are outlined.Comment: 7 pages, 5 figure

    Effects of precipitation changes on aboveground net primary production and soil respiration in a switchgrass field

    Get PDF
    Switchgrass (Panicum virgatum L.) is widely selected as a model feedstock for sustainable replacement of fossil fuels and climate change mitigation. However, how climate changes, such as altered precipitation (PPT), will influence switchgrass growth and soil carbon storage potential have not been well investigated. We conducted a two-year PPT manipulation experiment with five treatments: −50%, −33%, +0%, +33%, and +50% of ambient PPT, in an “Alamo” switchgrass field in Nashville, TN. Switchgrass aboveground net primary production (ANPP), leaf gas exchange, and soil respiration (SR) were determined each growing season. Data collected from this study was then used to test whether switchgrass ANPP responds to PPT changes in a double asymmetry pattern as framed by Knapp et al. (2017), and whether it is held true for other ecosystem processes such as SR. Results showed that the wet (+33%, and +50%) treatments had little effects on ANPP and leaf gas exchange compared to the ambient precipitation treatment, regardless of fertilization or not. The −33% treatment did not change ANPP and leaf photosynthesis, but significantly decreased transpiration and enhanced water use efficiency (WUE). Only the −50% treatment significantly decreased ANPP and LAI, without changing leaf photosynthesis. SR generally decreased under the drought treatments and increased under the wet treatments, while there was no significant difference between the two drought treatments or between the two wet treatments. Our results demonstrate that switchgrass ANPP responded in a single negative asymmetry model to PPT changes probably due to relative high PPT in the region. However, even in such a mesic ecosystem, SR responded strongly to PPT changes in an “S” curve model, suggesting that future climate changes may have greater but more complex effects on switchgrass belowground than aboveground processes. The contrasting models for switchgrass ANPP and SR in response to PPT indicate that extreme wet or dry PPT conditions may shift ecosystem from carbon accumulation toward debt, and in turn provide government and policy makers with useful information for sustainable management of switchgrass

    Author Correction: The flying spider-monkey tree fern genome provides insights into fern evolution and arborescence (Nature Plants, (2022), 8, 5, (500-512), 10.1038/s41477-022-01146-6)

    Get PDF
    Correction to: Nature Plantshttps://doi.org/10.1038/s41477-022-01146-6, published online 9 May 2022. In the version of the article initially published, Dipak Khadka, who collected the samples in Nepal, was thanked in the Acknowledgements instead of being listed as an author. His name and affiliation (GoldenGate International College, Tribhuvan University, Battisputali, Kathmandu, Nepal) have been added to the authorship in the HTML and PDF versions of the article

    The evolutionary patterns of barley pericentromeric chromosome regions, as shaped by linkage disequilibrium and domestication

    Get PDF
    The distribution of recombination events along large cereal chromosomes is uneven and is generally restricted to gene-rich telomeric ends. To understand how the lack of recombination affects diversity in the large pericentromeric regions, we analysed deep exome capture data from a final panel of 815 Hordeum vulgare (barley) cultivars, landraces and wild barleys, sampled from across their eco-geographical ranges. We defined and compared variant data across the pericentromeric and non-pericentromeric regions, observing a clear partitioning of diversity both within and between chromosomes and germplasm groups. Dramatically reduced diversity was found in the pericentromeres of both cultivars and landraces when compared with wild barley. We observed a mixture of completely and partially differentiated single-nucleotide polymorphisms (SNPs) between domesticated and wild gene pools, suggesting that domesticated gene pools were derived from multiple wild ancestors. Patterns of genome-wide linkage disequilibrium, haplotype block size and number, and variant frequency within blocks showed clear contrasts among individual chromosomes and between cultivars and wild barleys. Although most cultivar chromosomes shared a single major pericentromeric haplotype, chromosome 7H clearly differentiated the two-row and six-row types associated with different geographical origins. Within the pericentromeric regions we identified 22 387 non-synonymous SNPs, 92 of which were fixed for alternative alleles in cultivar versus wild accessions. Surprisingly, only 29 SNPs found exclusively in the cultivars were predicted to be 'highly deleterious'. Overall, our data reveal an unconventional pericentromeric genetic landscape among distinct barley gene pools, with different evolutionary processes driving domestication and diversification.</p

    Cochlear progenitor number is controlled through mesenchymal FGF receptor signaling

    Get PDF
    The sensory and supporting cells (SCs) of the organ of Corti are derived from a limited number of progenitors. The mechanisms that regulate the number of sensory progenitors are not known. Here, we show that Fibroblast Growth Factors (FGF) 9 and 20, which are expressed in the non-sensory (Fgf9) and sensory (Fgf20) epithelium during otic development, regulate the number of cochlear progenitors. We further demonstrate that Fgf receptor (Fgfr) 1 signaling within the developing sensory epithelium is required for the differentiation of outer hair cells and SCs, while mesenchymal FGFRs regulate the size of the sensory progenitor population and the overall cochlear length. In addition, ectopic FGFR activation in mesenchyme was sufficient to increase sensory progenitor proliferation and cochlear length. These data define a feedback mechanism, originating from epithelial FGF ligands and mediated through periotic mesenchyme that controls the number of sensory progenitors and the length of the cochlea. DOI: http://dx.doi.org/10.7554/eLife.05921.00

    Sexually dimorphic gene expression and transcriptome evolution provide mixed evidence for a fast-Z effect in heliconius

    Get PDF
    International audienceSex chromosomes have different evolutionary properties compared to autosomes due to their hemizygous nature. In particular, recessive mutations are more readily exposed to selection, which can lead to faster rates of molecular evolution. Here, we report patterns of gene expression and molecular evolution for a group of butterflies. First, we improve the completeness of the Heliconius melpomene reference annotation, a neotropical butterfly with a ZW sex determination system. Then, we analyse RNA from male and female whole abdomens and sequence female ovary and gut tissue to identify sex‐ and tissue‐specific gene expression profiles in H. melpomene. Using these expression profiles, we compare (a) sequence divergence and polymorphism; (b) the strength of positive and negative selection; and (c) rates of adaptive evolution, for Z and autosomal genes between two species of Heliconius butterflies, H. melpomene and H. erato. We show that the rate of adaptive substitutions is higher for Z than autosomal genes, but contrary to expectation, it is also higher for male‐biased than female‐biased genes. Additionally, we find no significant increase in the rate of adaptive evolution or purifying selection on genes expressed in ovary tissue, a heterogametic‐specific tissue. Our results contribute to a growing body of literature from other ZW systems that also provide mixed evidence for a fast‐Z effect where hemizygosity influences the rate of adaptive substitutions

    Measurement of Exclusive rho+rho- Production in Mid-Virtuality Two-Photon Interactions and Study of the gamma gamma* -> rho rho Process at LEP

    Full text link
    Exclusive rho+rho- production in two-photon collisions between a quasi-real photon, gamma, and a mid-virtuality photon, gamma*, is studied with data collected at LEP at centre-of-mass energies root(s)=183-209GeV with a total integrated luminosity of 684.8pb^-1. The cross section of the gamma gamma* -> rho+ rho- process is determined as a function of the photon virtuality, Q^2, and the two-photon centre-of-mass energy, W_gg, in the kinematic region: 0.2GeV^2 < Q^2 <0.85GeV^2 and 1.1GeV < W_gg < 3GeV. These results, together with previous L3 measurements of rho0 rho0 and rho+ rho- production, allow a study of the gamma gamma* -> rho rho process over the Q^2-region 0.2GeV^2 < Q^2 < 30 GeV^2

    Measurement of Exclusive rho^0 rho^0 Production in Mid-Virtuality Two-Photon Interactions at LEP

    Full text link
    Exclusive rho^0 rho^0 production in two-photon collisions between a quasi-real and a mid-virtuality photon is studied with data collected at LEP at centre-of-mass energies 183GeV < sqrt{s} < 209GeV with a total integrated luminosity of 684.8/pb. The cross section of the process gamma gamma* -> rho^0 rho^0 is determined as a function of the photon virtuality, q^2, and the two-photon centre-of-mass energy, Wgg, in the kinematic region: 0.2GeV^2 < q^2 < 0.85GeV^2 and 1.1GeV < Wgg < 3GeV
    • 

    corecore