138 research outputs found
Discovery of an Optimal Porous Crystalline Material for the Capture of Chemical Warfare Agents
Chemical warfare agents (CWAs) are regarded as a critical challenge in our society. Here, we use a high-throughput computational screening strategy backed up by experimental validation to identify and synthesize a promising porous material for CWA removal under humid conditions. Starting with a database of 2,932 existing metal-organic framework (MOF) structures, we selected those possessing cavities big enough to adsorb well-known CWAs such as sarin, soman, and mustard gas as well as their nontoxic simulants. We used Widom method to reduce significantly the simulation time of water adsorption, allowing us to shortlist 156 hydrophobic MOFs where water will not compete with the CWAs to get adsorbed. We then moved to grand canonical Monte Carlo (GCMC) simulations to assess the removal capacity of CWAs. We selected the best candidates in terms of performance but also in terms of chemical stability and moved to synthesis and experimental breakthrough adsorption to probe the predicted, excellent performance. This computational-experimental work represents a fast and efficient approach to screen porous materials in applications that involve the presence of moisture
Targeted classification of metalâorganic frameworks in the Cambridge structural database (CSD)
Large-scale targeted exploration of metalâorganic frameworks (MOFs) with characteristics such as specific surface chemistry or metal-cluster family has not been investigated so far. These definitions are particularly important because they can define the way MOFs interact with specific molecules (e.g. their hydrophilic/phobic character) or their physicochemical stability. We report here the development of algorithms to break down the overarching family of MOFs into a number of subgroups according to some of their key chemical and physical features. Available within the Cambridge Crystallographic Data Centre's (CCDC) software, we introduce new approaches to allow researchers to browse and efficiently look for targeted MOF families based on some of the most well-known secondary building units. We then classify them in terms of their crystalline properties: metal-cluster, network and pore dimensionality, surface chemistry (i.e. functional groups) and chirality. This dynamic database and family of algorithms allow experimentalists and computational users to benefit from the developed criteria to look for specific classes of MOFs but also enable users â and encourage them â to develop additional MOF queries based on desired chemistries. These tools are backed-up by an interactive web-based data explorer containing all the data obtained. We also demonstrate the usefulness of these tools with a high-throughput screening for hydrogen storage at room temperature. This toolbox, integrated in the CCDC software, will guide future exploration of MOFs and similar materials, as well as their design and development for an ever-increasing range of potential applications
CD40 signal rewires fatty acid and glutamine metabolism for stimulating macrophage anti-tumorigenic functions.
Exposure of lipopolysaccharide triggers macrophage pro-inflammatory polarization accompanied by metabolic reprogramming, characterized by elevated aerobic glycolysis and a broken tricarboxylic acid cycle. However, in contrast to lipopolysaccharide, CD40 signal is able to drive pro-inflammatory and anti-tumorigenic polarization by some yet undefined metabolic programming. Here we show that CD40 activation triggers fatty acid oxidation (FAO) and glutamine metabolism to promote ATP citrate lyase-dependent epigenetic reprogramming of pro-inflammatory genes and anti-tumorigenic phenotypes in macrophages. Mechanistically, glutamine usage reinforces FAO-induced pro-inflammatory and anti-tumorigenic activation by fine-tuning the NAD <sup>+</sup> /NADH ratio via glutamine-to-lactate conversion. Genetic ablation of important metabolic enzymes involved in CD40-mediated metabolic reprogramming abolishes agonistic anti-CD40-induced antitumor responses and reeducation of tumor-associated macrophages. Together these data show that metabolic reprogramming, which includes FAO and glutamine metabolism, controls the activation of pro-inflammatory and anti-tumorigenic polarization, and highlight a therapeutic potential of metabolic preconditioning of tumor-associated macrophages before agonistic anti-CD40 treatments
Composition of the Pseudoscalar Eta and Eta' Mesons
The composition of the eta and eta' mesons has long been a source of
discussion and is of current interest with new experimental results appearing.
We investigate what can be learnt from a number of different processes: V to P
gamma and P to V gamma (V and P are light vector and pseudoscalar mesons
respectively), P to gamma gamma, J/psi,psi' to P gamma, J/psi,psi' to P V, and
chi_{c0,2} to PP. These constrain the eta-eta' mixing angle to a consistent
value, phi approx 42 degrees; we find that the c cbar components are lesssim 5%
in amplitude. We also find that, while the data hint at a small gluonic
component in the eta', the conclusions depend sensitively on unknown form
factors associated with exclusive dynamics. In addition, we predict BR(psi' to
eta' gamma) approx 1 10^{-5} and BR(chi_{c0} to eta eta') approx 2 10^{-5} - 1
10^{-4}. We provide a method to test the mixing using chi_{c2} to eta eta, eta'
eta', and eta eta' modes and make some general observations on chi_{c0,2}
decays. We also survey the semileptonic and hadronic decays of bottom and
charmed mesons and find some modes where the mixing angle can be extracted
cleanly with the current experimental data, some where more data will allow
this, and some where a more detailed knowledge of the different amplitudes is
required.Comment: 34 pages, 11 figures. v2: version published in JHEP, added
substantial section on B and D meson electroweak decays, added comment on
psi' to eta(')/eta_c gamma, Figs 5 and 6 split and made clearer, added
references, other minor revisions which don't change conclusion
Evidence of Color Coherence Effects in W+jets Events from ppbar Collisions at sqrt(s) = 1.8 TeV
We report the results of a study of color coherence effects in ppbar
collisions based on data collected by the D0 detector during the 1994-1995 run
of the Fermilab Tevatron Collider, at a center of mass energy sqrt(s) = 1.8
TeV. Initial-to-final state color interference effects are studied by examining
particle distribution patterns in events with a W boson and at least one jet.
The data are compared to Monte Carlo simulations with different color coherence
implementations and to an analytic modified-leading-logarithm perturbative
calculation based on the local parton-hadron duality hypothesis.Comment: 13 pages, 6 figures. Submitted to Physics Letters
Strategic directions in constraint programming
An abstract is not available
Search for electroweak production of single top quarks in collisions.
We present a search for electroweak production of single top quarks in the electron+jets and muon+jets decay channels. The measurements use ~90 pb^-1 of data from Run 1 of the Fermilab Tevatron collider, collected at 1.8 TeV with the DZero detector between 1992 and 1995. We use events that include a tagging muon, implying the presence of a b jet, to set an upper limit at the 95% confidence level on the cross section for the s-channel process ppbar->tb+X of 39 pb. The upper limit for the t-channel process ppbar->tqb+X is 58 pb. (arXiv
Measurement of prompt hadron production ratios in collisions at 0.9 and 7 TeV
The charged-particle production ratios , , ,
, and are measured with the LHCb detector using of collisions delivered by the LHC at TeV and
at TeV. The measurements are performed as a
function of transverse momentum and pseudorapidity . The
production ratios are compared to the predictions of several Monte Carlo
generator settings, none of which are able to describe adequately all
observables. The ratio is also considered as a function of rapidity
loss, , and is used to constrain models of
baryon transport.Comment: Incorrect entries in Table 2 corrected. No consequences for rest of
pape
- âŠ