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Abstract We describe the RESUMMINO package, a C++
and FORTRAN program dedicated to precision calculations
in the framework of gaugino and slepton pair production at
hadron colliders. This code allows to calculate transverse-
momentum and invariant-mass distributions as well as total
cross sections by combining the next-to-leading order pre-
dictions obtained by means of perturbative QCD with the re-
summation of the large logarithmic contributions arising in
the small transverse-momentum region and close to the pro-
duction threshold. The results computed in this way benefit
from reduced theoretical uncertainties, compared to a pure
next-to-leading order approach as currently employed in the
experimental analyses searching for sleptons and gauginos
at hadron colliders. This is illustrated by using RESUMMINO

in the context of a typical supersymmetric benchmark point
dedicated to superpartner searches at the Large Hadron Col-
lider.

1 Introduction

Over the last forty years, theoretical developments and ex-
perimental discoveries in high-energy physics have led to an
extremely coherent picture, the so-called Standard Model of
particle physics. In particular, the recent observation of a
neutral bosonic particle compatible with a Standard-Model-
like Higgs boson [1, 2] represents an impressive success of
this theoretical framework. However, many questions, such
as the stabilization of the mass of a fundamental scalar parti-
cle with respect to radiative corrections, remain unanswered.
Consequently, the Standard Model is widely accepted as an
effective theory implied by a more fundamental one. Among
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the plethora of candidates for this new physics theory, weak-
scale supersymmetry [3, 4] is one of the most appealing and
studied options. It not only addresses the above-mentioned
hierarchy problem but also provides a solution for the unifi-
cation of the gauge couplings at high energies and explains
the presence of dark matter in the Universe.

Experimental searches, especially at the Large Hadron
Collider (LHC) at CERN, for the supersymmetric partners
of the Standard Model particles are therefore among the
main items of the experimental program in high-energy
physics. Up to now, both the ATLAS and CMS collabora-
tions have mainly focused on seeking for hints of squarks
and gluinos, being strongly produced. All results are how-
ever compatible with the Standard Model expectation [5, 6].
As a consequence, limits on the masses of the squarks and
gluino are pushed to higher and higher scales and the exper-
imental attention starts to shift towards the pair production
of the electroweak slepton, neutralino and chargino eigen-
states.

Investigations at a center-of-mass energy of 8 TeV of
the trilepton golden signature have already led to bounds
of several hundreds of GeV on the masses of these parti-
cles [7, 8]. However, in contrast to the strong production
channels where estimates of signal cross sections rely on
precise theoretical predictions at the next-to-leading order
and next-to-leading logarithmic accuracy [9–15], searches
for the weak superpartners are only based on next-to-leading
order computations, suffering from larger theoretical uncer-
tainties [16–18].

For an efficient suppression of the Standard Model back-
ground and a more precise extraction of the underlying
supersymmetric mass limits (or a measurement of the su-
persymmetric parameters in the case of a discovery), ac-
curate theoretical calculations of signal cross sections and
key kinematical distributions are imperative. Along these
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lines, while supersymmetric particle pairs are produced
with a vanishing transverse momentum (pT ) at the low-
est order in the strong coupling αs , gluon radiation from
quark-antiquark initial states and their splitting into quark-
antiquark pairs at O(αs) induce transverse momenta extend-
ing to larger values. Next-to-leading order corrections have
therefore to be taken into account. However, the perturbative
calculation diverges at small pT , which indicates the need
for soft-gluon resummation to all orders and for a consistent
matching with the fixed order results. On the same footings,
when supersymmetric particle pairs are produced close to
the production threshold, soft gluon emission again leads to
large logarithmic terms that must be resummed and matched
to fixed order in order to obtain reliable predictions.

These considerations motivate us to introduce in this
work the computer code RESUMMINO, implemented in
C++ and FORTRAN and that can be downloaded from the
website

http://www.resummino.org

It combines a leading order calculation of slepton and
gaugino pair production at hadron colliders [19–21] sup-
plemented by the associated supersymmetric QCD next-to-
leading order corrections [17, 18], with the resummation of
the leading and next-to-leading logarithms to all orders in
the threshold [17, 18, 22] and small transverse-momentum
[22–24] regimes or simultaneously in both [22, 25, 26].

In Sect. 2 of this paper, we briefly review the three re-
summation formalisms included in the RESUMMINO pack-
age, giving the explicit form of the implemented formulas,
as well as the techniques employed to calculate the underly-
ing integrals. Section 3 is more technical and is dedicated to
the installation of the program and its running. A set of il-
lustrative results are then shown in Sect. 4, after choosing a
benchmark point typical for supersymmetry searches at the
LHC.

2 Resummation formalisms

2.1 Main features

In perturbative QCD, the doubly-differential cross section
describing the production, at hadron colliders, of a gaugino
or a slepton pair with an invariant mass M and a transverse
momentum pT is calculated by means of the QCD factoriza-
tion theorem. The fixed order result is in this way obtained
by convolving the partonic cross section dσab, computed at a
given order in the strong coupling, with the universal densi-
ties fa and fb of the partons a and b carrying the momentum
fractions xa and xb of the colliding hadrons,

M2 d2σ

dM2 dp2
T

(τ )

=
∑

ab

∫ 1

0
dxa dxb dz

[
xafa

(
xa,μ

2
F

)]

×[
xbfb

(
xb,μ

2
F

)][
zdσab

(
z,M2,p2

T ,μ2
F ,μ2

R

)]

× δ(τ − xaxbz). (1)

In this expression, the unphysical factorization and renor-
malization scales are respectively denoted by μF and μR

and we have introduced the quantity τ = M2/Sh, Sh stand-
ing for the hadronic center-of-mass energy. After perform-
ing a Mellin transform with respect to the variable τ , this
cross section can be reexpressed as a simple product of par-
ton densities and the partonic cross section in the conjugate
Mellin N -space,

M2 d2σ

dM2 dp2
T

(N − 1)

=
∑

ab

fa

(
N,μ2

F

)
fb

(
N,μ2

F

)

×σab

(
N,M2,p2

T ,μ2
F ,μ2

R

)
, (2)

where the Mellin moments of the quantities F = σ , σab , fa

and fb are defined by

F(N) =
∫ 1

0
dy yN−1F(y), (3)

with y = τ , z, xa and xb , respectively. Under the form of
Eq. (2), it is possible to effectively resum to all orders in
αs the large logarithmic terms arising in the critical re-
gions, i.e., when the transverse momentum tends towards
zero and/or when the partonic center-of-mass energy is close
to the production threshold. The exact form of the resummed
cross sections is detailed for the small transverse momen-
tum, threshold and joint regimes in Sect. 2.2, Sect. 2.3 and
Sect. 2.4, respectively.

Although these large logarithms must clearly be re-
summed in the critical regions, the full perturbative com-
putation, only partially accounted for by resummation, is
expected to be reliable away from these regions. In order to
obtain valid predictions in all kinematical regions, the fixed
order (σ (f.o.)) and resummed (σ (res.)) results have then to be
consistently combined by subtracting from their sum their
overlap (σ (exp.)),

σab = σ
(res.)
ab + σ

(f.o.)
ab − σ

(exp.)

ab . (4)

The latter is obtained by expanding the resummation for-
mula to the desired accuracy, i.e., at O(αs) in our case, and
is thus dependent on the employed resummation formalism.
The analytical expressions of σ (exp.) are therefore given in
the relevant subsections below.
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While the fixed order result σ (f.o.) can in general be di-
rectly computed in physical space, or in other words by di-
rectly using Eq. (1), the resummed component and the cal-
culation of its expansion at a given order in αs requires fac-
torization properties that only hold in conjugate spaces so
that Eq. (2) is employed. An inverse Mellin transform is
consequently necessary to get back to the physical space,
which implies to take care of the singularities possibly aris-
ing at the level of the N -space cross section. This is achieved
by choosing an integration contour inspired by the principal
value procedure and minimal prescription [27, 28]. On this
contour, the Mellin variable N is parameterized as a func-
tion of two parameters C and φ and one variable y,

N(y) = C + ye±iφ with y ∈ [0,∞[. (5)

The parameter C is chosen such that, on the one hand, the
poles in the Mellin moments of the parton densities related
to the Regge singularity lie to the left of the integration con-
tour and that, on the other hand, the Landau pole related to
the running of the strong coupling constant lies to its right.
Furthermore, the phase φ can formally be chosen anywhere
in the range [π/2,π[.

2.2 Threshold resummation at the next-to-leading
logarithmic accuracy

In the threshold regime, the slepton or gaugino pair invari-
ant mass M2 is close to the partonic center-of-mass energy
or equivalently, the Mellin variable N tends towards infin-
ity. In this case, refactorization allows us to rewrite the par-
tonic cross section σab obtained after integrating Eq. (2)
over the transverse momentum pT into a closed exponen-
tial form [29–34],

σ
(res.)
ab

(
N,M2,μ2

F ,μ2
R

)

= Hab

(
M2,μ2

F ,μ2
R

)

× exp
[

Gab

(
N,M2,μ2

F ,μ2
R

)]
. (6)

The hard part of the scattering process, independent of the
Mellin variable N , is embedded within the perturbatively
computable function Hab . On different footings, the func-
tion Gab , that can also be computed by means of perturba-
tion theory, collects soft and collinear parton radiation and
absorbs the large logarithmic contributions arising at fixed
order.

It has however recently been shown that Eq. (6) can be
improved, at the next-to-leading logarithmic accuracy, by
including and resumming subleading terms stemming from
universal collinear radiation of the initial state partons [35–
38]. This improvement procedure leads to a resummed cross
section explicitly depending on the one-loop approximation

of the QCD evolution operator E
(1)
ab , which drives the be-

havior of the parton-into-parton density functions with the
energy and encompasses collinear radiation [39]. Conse-
quently, the original resummation formula is modified to

σ
(res.)
ab

(
N,M2,μ2

F ,μ2
R

)

=
∑

a′,b′
E

(1)

aa′
(
N,M2/N̄2,μ2

F

)

× E
(1)

bb′
(
N,M2/N̄2,μ2

F

)
H̃a′b′

(
M2,μ2

R

)

× exp
[

G̃a′b′
(
N̄,M2,μ2

R

)]
, (7)

where we have introduced the reduced Mellin variable de-
fined by N̄ = NeγE . The improved soft and hard functions
G̃ab and H̃ab can still be perturbatively computed and read,
at the next-to-leading logarithmic accuracy,

H̃ab

(
M2,μ2

R

)

= H̃(0)
ab

(
M2,μ2

R

) + αs(μ
2
R)

2π
H̃(1)

ab

(
M2,μ2

R

)
,

G̃ab

(
N,M2,μ2

R

)

= g̃
(1)
ab

(
αs

2π
β0 ln N̄

)
ln N̄ + g̃

(2)
ab

(
αs

2π
β0 ln N̄,

M2

μ2
R

)
.

(8)

The arguments of the leading and next-to-leading contribu-
tions to the Sudakov form factor G̃ab depend, in addition to
the reduced Mellin variable, on the one-loop coefficient of
the QCD beta-function β0. This quantity and the associated
two-loop coefficient β1 given for further references are de-
fined, in our normalization conventions, by

β0 = 11

6
CA − 2

3
Nf τR,

β1 = 1

6

[
17C2

A − 5CANf − 3CF Nf

]
,

(9)

for Nf active quark flavors. In those expressions, the group
theory invariants of SU(3) are standard and read CA = 3,
CF = 4/3 and τR = 1/2.

The first two coefficients g̃
(1)
ab and g̃

(2)
ab of the function G̃ab

allow to resum the leading and next-to-leading logarithmic
contributions yielded by soft and collinear radiation. In the
MS renormalization scheme, their functional form is explic-
itly given by [17, 18, 29–31, 35]

g̃
(1)
ab (λ) = 1

2λβ0

(
A(1)

a + A
(1)
b

)(
2λ + ln(1 − 2λ)

)
,

g̃
(2)
ab

(
λ,

M2

μ2
R

)

= − 1

2β2
0

[
A(2)

a + A
(2)
b

][
2λ + ln(1 − 2λ)

]



Page 4 of 12 Eur. Phys. J. C (2013) 73:2480

+ 1

β0

[
B(1)

a + B
(1)
b

]
ln(1 − 2λ) (10)

+ 1

2β0

[
A(1)

a + A
(1)
b

][
2λ + ln(1 − 2λ)

]
ln

M2

μ2
R

+ β1

2β3
0

[
A(1)

a + A
(1)
b

][
2λ + ln(1 − 2λ)

+ 1

2
ln2(1 − 2λ)

]
.

This shows that the first two terms of the perturbative expan-
sion of the Sudakov form factor only depend on the Aa and
Ba resummation functions respectively describing soft and
collinear radiation and flavor-conserving collinear radiation.
The leading terms of their expansion as series in powers of
αs have been calculated in the past and are given by [30, 40,
41]

A(1)
a = 2Ca, A(2)

a = 2Ca

[(
67

18
− π2

6

)
CA − 5

9
Nf

]
,

(11)

and

B(1)
q = −3CF and B(1)

g = −2β0, (12)

for the Aa and Ba functions.
Turning to the hard parts of the resummed cross section,

the leading and next-to-leading order contributions to the
H̃ab function read [17, 18]

H̃(0)
ab

(
M2,μ2

R

) = σ
(0)
ab

(
M2),

H̃(1)
ab

(
M2,μ2

R

) = σ
(0)
ab

(
M2)

[
A0 + π2

6

(
A(1)

a + A
(1)
b

)]
,

(13)

where the dependence on the renormalization scale μR of
the infrared-finite part A0 of the renormalized virtual correc-
tions σV

ab is understood. The expression of the H̃(1)
ab compo-

nent is not general and assumes that the virtual contributions
to the next-to-leading order cross section are normalized, in
4 − 2ε dimensions, as

σV
ab

(
M2,μ2

R

) = αs

2π

(
4πμ2

R

M2

)ε
Γ (1 − ε)

Γ (1 − 2ε)
σ

(0)
ab

(
M2)

×
[ A−2

ε2
+ A−1

ε
+ A0

]
+ O(ε). (14)

It should be noted that for supersymmetric processes, these
virtual corrections not only include pure QCD contributions,
but also supersymmetric diagrams with squarks and gluinos
running into the loops.

In order to avoid a double-counting of the logarithmic
terms when combining the resummed cross section with the

fixed-order result as given in Eq. (4), it is necessary to ex-
pand Eq. (7) at O(αs). The expanded partonic cross section
is then given, in Mellin space, by [17, 18]

σ
(exp.)

ab

(
N,M2,μ2

F ,μ2
R

)

= H̃(0)
ab

(
M2,μ2

R

)

+ αs

2π
H̃(1)

ab

(
M2,μ2

R

)

− αs

2π
ln

N̄2μ2
F

M2

∑

c

[
γ (1)
ac (N)H̃(0)

cb

(
M2,μ2

R

)]

− αs

2π
ln

N̄2μ2
F

M2

∑

c

[
H̃(0)

ac

(
M2,μ2

R

)
γ

(1)
bc (N)

]

− αs

2π
H̃(0)

ab

(
M2,μ2

R

)[(
A(1)

a + A
(1)
b

)
ln2 N̄

]

+ αs

π
H̃(0)

ab

(
M2,μ2

R

)[(
γ (1)
a + γ

(1)
b

)
ln N̄

]
, (15)

the quantities γ
(1)
ab being the full Mellin moments of the one-

loop approximation of the Altarelli–Parisi splitting func-
tions in four dimensions,

γ (1)
qq (N) = CF

[
3

2
+ 1

N(N + 1)
− 2

N∑

k=1

1

k

]
,

γ (1)
gq (N) = CF

[
2 + N + N2

N(N2 − 1)

]
,

γ (1)
qg (N) = τR

[
2 + N + N2

N(N + 1)(N + 2)

]
,

γ (1)
gg (N) = 2CA

[
1

N(N − 1)
+ 1

(N + 1)(N + 2)
−

N∑

k=1

1

k

]

+ β0.

(16)

and γ
(1)
a the field anomalous dimensions corresponding,

in axial gauge, to the virtual, N -independent, pieces of
γ

(1)
aa [42],

γ (1)
q = 3CF

2
and γ (1)

g = β0. (17)

2.3 Transverse-momentum resummation
at the next-to-leading logarithmic accuracy

In order to be able to refactorize Eq. (2) without performing
the integration over the transverse momentum pT and hence
subsequently resum the large logarithmic contributions aris-
ing at small pT , it is necessary to apply a Fourier transform
to the partonic cross section σab ,
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σ
(res.)
ab

(
N,M2,p2

T ,μ2
F ,μ2

R

)

=
∫ ∞

0
db

b

2
J0(bpT )

× σ
(res.)
ab

(
N,M2, b2,μ2

F ,μ2
R

)
, (18)

where J0(y) denotes the zeroth-order Bessel function. This
operation renders the cross section explicitly dependent on
the variable b, conjugate to the transverse momentum pT ,
dubbed the impact parameter. This additional transforma-
tion allows us to correctly take into account transverse-
momentum conservation so that the partonic cross section
can be rewritten under a form where soft and collinear radi-
ation exponentiates [43–45],

σ
(res.)
ab

(
N,M2, b2,μ2

F ,μ2
R

)

=
∑

a′,ã,b′,b̃

E
(1)

a′a
(
N,1/b̄2,μ2

F

)

× E
(1)

b′b
(
N,1/b̄2,μ2

F

)
Cãa′

(
N,1/b̄2)C

b̃b′
(
N,1/b̄2)

× Ha′′b′′
(
M2,μ2

R

)
exp

[
Ga′′b′′

(
M2b̄2,M2,μ2

R

)]
. (19)

In this equation, holding at the next-to-leading logarithmic
accuracy, the presence of the one-loop approximation of
the QCD evolution operators allows for evaluating the par-
ton densities at the natural scale of the process 1/b̄, with
b̄ ≡ (b/2)eγE . Moreover, all the other functions can be cal-
culated perturbatively.

Although there are some freedoms, corresponding to the
choice of a resummation scheme, in the way to separate the
different contributions into the various Cab , Gab and Hab

factors [46, 47], we adopt the most physical option where
the Sudakov form factor and the Cab function are free from
any hard contribution. In this case, the Sudakov form factor
is written as [23, 24]

Gab

(
M2b̄2,M2,μ2

R

)

= g
(1)
ab

(
αs

2π
β0 ln

[
M2b̄2]

)
ln

[
M2b̄2]

+ g
(2)
ab

(
αs

2π
β0 ln

[
M2b̄

]
,
M2

μ2
R

)
, (20)

where the first term in this expansion,

g
(1)
ab (λ) = 1

2λβ0

(
A(1)

a + A
(1)
b

)[
λ + ln(1 − λ)

]
, (21)

collects the leading logarithmic contributions, and the sec-
ond term,

g
(2)
ab

(
λ,M2/μ2

R

)

= 1

2β0

[
B(1)

a + B
(1)
b

]
ln(1 − λ)

+ 1

2β0

[
A(1)

a + A
(1)
b

][ λ

1 − λ
+ ln(1 − λ)

]
ln

M2

μ2
R

+ β1

2β3
0

[
A(1)

a + A
(1)
b

][λ + ln(1 − λ)

1 − λ
+ 1

2
ln2(1 − λ)

]

− 1

2β2
0

[
A(2)

a + A
(2)
b

][ λ

1 − λ
+ ln(1 − λ)

]
, (22)

the next-to-leading pieces. We recall that the relevant coeffi-
cients of the resummation functions Aa and Ba have already
been introduced in Eq. (11) and Eq. (12).

In the ‘physical’ resummation scheme that we have
adopted, the hard function Hab is free from any logarithmic
contribution and includes, as for threshold resummation, the
finite parts of the renormalized virtual contributions A0 de-
fined in Eq. (14). It reads, at the next-to-leading order accu-
racy [23, 24],

Hab

(
M2,μ2

R

) = σ
(0)
ab

(
M2)

[
1 + αs

2π
A0

]
. (23)

Finally, the Cab functions are evaluated, still at the next-to-
leading logarithmic accuracy and in this scheme, as [23, 24]

Cab

(
N,μ2

R

) = δab + αs

2π

[
π2

6
Caδab − γ

(1),ε
ab (N)

]
, (24)

where γ
(1),ε
ab denotes the O(ε) parts of the Altarelli–Parisi

splitting kernels in Mellin space,

γ (1),ε
qq (N) = −CF

N(N + 1)
,

γ (1),ε
qg (N) = −2τR

(N + 1)(N + 2)
,

γ (1),ε
gq (N) = −CF

N + 1
,

γ (1),ε
gg (N) = 0.

(25)

After resumming the partonic cross section in the im-
pact parameter b-space, the resummed cross section has to
be transformed back to the physical pT -space. This proce-
dure requires to pay a particular attention to the singularities
present in the resummed exponent when λ = 1 in Eq. (21)
and Eq. (22) that are related to the presence of the Landau
pole in the perturbative running of the strong coupling con-
stant. Following the prescription presented in Ref. [48], the
inverse Fourier transform is calculated after deforming the
integration contour of the b-integral into the complex plane
by defining two integration branches

b = e±iϕt with t ∈ [0,∞[ and ϕ ∈
]

0,
π

2

[
. (26)

The Bessel function J0(y) appearing in Eq. (18) is then re-
placed by the sum of two auxiliary functions h1 and h2 that
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distinguish positive and negative phases in the complex b-
plane,

h1(y, v) = − 1

2π

∫ −π+ivπ

−ivπ

dθ e−iy sin θ ,

h2(y, v) = − 1

2π

∫ −ivπ

π+ivπ

dθ e−iy sin θ .

(27)

For any choice of the v-parameter, these two functions are
always finite and their sum is independent of v. This splitting
has the advantage that each of the two functions is associated
with only one single branch of the integration contour of
Eq. (26).

In order to match with the fixed order result, making use
of Eq. (4), the resummed cross section of Eq. (18), together
with Eq. (19), we expand these two equations at O(αs),

σ
(exp.)

ab

(
N,M2,p2

T ,μ2
F ,μ2

R

)

= H(0)
ab

(
M2,μ2)

+ αs

2π
H(1)

ab

(
M2,μ2)

− αs

2π

[
2J − ln

M2

μ2
F

]∑

c

[
H(0)

ac

(
M2,μ2

R

)
γ

(1)
cb (N)

]

− αs

2π

[
2J − ln

M2

μ2
F

]∑

c

[
γ (1)
ca (N)H(0)

cb

(
M2,μ2

R

)]

+ αs

2π

∑

c

[
H(0)

ac

(
M2,μ2

R

)
C(1)

cb (N)
]

+ αs

2π

∑

c

[
C(1)

ca (N)H(0)
cb

(
M2,μ2

R

)]

− αs

8π
H(0)

ab

(
M2,μ2

R

)[
A(1)

a + A
(1)
b i

]
J 2

− αs

4π
H(0)

ab

(
M2,μ2

R

)[
B(1)

a + B
(1)
b

]
J . (28)

We recall that the resummation coefficients appearing in this
expression have already been introduced in Eq. (11) and
Eq. (12) and that the Altarelli–Parisi splitting kernels have
been presented in Eq. (16). Moreover, the first two coeffi-
cient of the perturbative expansion of the hard function Hab

and those of the function Cab are deduced from Eq. (23) and
Eq. (24). In addition, all the dependence on the transverse
momentum has been embedded within the integral J de-
fined by

J =
∫ ∞

0
db

b

2
J0(bpT ) ln

[
M2b̄2]. (29)

2.4 Joint resummation at the next-to-leading
logarithmic accuracy

In this section, we generalize the results of Sect. 2.3 so that
both types of large logarithms arising either in the small
pT region or near threshold are resummed simultaneously.
Since these logarithms have the same dynamical origin, their
joint reorganization is possible. In this way, they eventually
exponentiate very similarly to the case of the transverse mo-
mentum regime of Eq. (19) [48–50],

σ
(res.)
ab

(
N,M2, b2,μ2

F ,μ2
R

)

=
∑

a′,ã,b′,b̃

E
(1)

a′a
(
N,M2/χ2,μ2

F

)

× E
(1)

b′b
(
N,M2/χ2,μ2

F

)
Cãa′

(
N,M2/χ2)

× C
b̃b′

(
N,M2/χ2)

× Ha′′b′′
(
M2,μ2

R

)
exp

[
Ga′′b′′

(
M2, N̄, b̄,μ2

R

)]
.

(30)

In order to ensure a proper refactorization of the cross sec-
tion, a Fourier transform has again been performed, as in
Eq. (18). Furthermore, we have introduced the function χ ,
defined by

χ ≡ χ(N̄, b̄) = N̄

1 + b̄/N̄
+ b̄, (31)

which interpolates between N̄ in the threshold region, when
N̄ � b̄, and b̄ in the small-pT region, when b̄ � N̄ . Even
though there are several ways to define such an interpola-
tion, the choice of Eq. (31) first implies that the leading and
next-to-leading logarithms both in b̄ and N̄ are correctly re-
produced, respectively in the limits b̄ → ∞ and N̄ → ∞.
Next, it avoids the introduction of sizable subleading terms
into perturbative expansions in αs of the resummed formula
of Eq. (30) that are not predicted by fixed-order computa-
tions.

While the Hab and Cab functions have exactly the
same form as their counterparts in the small transverse-
momentum regime shown in Eq. (23) and Eq. (24), the Su-
dakov form factor now reads

Gab

(
M2, N̄, b̄2,μ2

R

)

= g
(1)
ab

(
αs

2π
β0 lnχ

)
lnχ

+ g
(2)
ab

(
αs

2π
β0 lnχ, ln N̄,

M2

μ2
R

)
, (32)

where the coefficients of its next-to-leading logarithmic ac-
curate expansion are, in the MS-scheme, given by [25, 26]
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g
(1)
ab (λ) = 1

2λβ0

(
A(1)

a + A
(1)
b

)[
2λ + ln(1 − 2λ)

]
,

g
(2)
ab

(
λ, ln N̄,

M2

μ2
R

)

= − 1

β0

[
γ (1)
a + γ

(1)
b

]
ln(1 − 2λ)

− 1

2β2
0

[
A(2)

a + A
(2)
b

][
2λ

1 − αs

π
β0 ln N̄

1 − 2λ

+ ln(1 − 2λ)

]

+ 1

β0

[
A(1)

a + A
(1)
b

][
λ

1 − αs

π
β0 ln N̄

1 − 2λ
(33)

+ 1

2
ln(1 − 2λ)

]
ln

M2

μ2
R

+ β1

2β3
0

[
A(1)

a + A
(1)
b

]

×
[
(2λ + ln(1 − 2λ))(1 − αs

π
β0 ln N̄)

1 − 2λ

]

+ β1

4β3
0

[
A(1)

a + A
(1)
b

][
ln2(1 − 2λ)

]
.

We recall that the resummation coefficients have already
been shown in Eq. (11) and Eq. (12) and that the one-loop
approximation of the field anomalous dimensions γ

(1)
a are

the N -independent parts of the Altarelli–Parisi splitting ker-
nels (in axial gauge) given in Eq. (17).

Double counting implied when combining the resummed
results presented above, after getting back to the physical
pT -space as shown in Sect. 2.3, is again removed by sub-
tracting the expansion of Eq. (18), together with Eq. (30), at
the first order in αs . This expansion has the same functional
form as Eq. (28), after replacing the integral of the zeroth-
order Bessel function J by

J̃ =
∫ ∞

0
db

b

2
J0(bpT ) lnχ. (34)

3 Installing and running RESUMMINO

3.1 Requirements and technical details

In order to use RESUMMINO, several external libraries and
header files are required and must be installed on the system.

First, information on the benchmark supersymmetric sce-
nario under consideration is passed to the program by means
of files compliant with the Supersymmetry Les Houches Ac-
cord (SLHA) conventions [51, 52]. We have adopted the

choice to internally handle such files by making use of SL-
HAEA [53], a C++ header-only library dedicated to input,
output and manipulation of SLHA data. While SLHAEA is
fully included in RESUMMINO and hence does not need to
be downloaded by the user, this tool relies on some head-
ers of the BOOST C++ libraries [54] that are in contrast not
provided with RESUMMINO. Therefore, their presence on
the system is a necessary prerequisite and the two packages
BOOST and BOOST-DEVEL must be available.

Next, both the fixed order and resummed components of
the hadronic cross section require the evaluation of parton
distribution functions, either in the physical x-space or in the
conjugate Mellin N -space. The RESUMMINO package does
not come with any built-in parton density fit and entirely re-
lies on the external LHAPDF library [55] which must there-
fore be installed by the user. On run-time, the Mellin mo-
ment of the parton densities parameterization under consid-
eration are obtained by a numerical fit performed by means
of the Levenberg–Marquardt algorithm dedicated to multi-
dimensional fits of non-linear functions [56, 57], as imple-
mented in the GNU Scientific C++ Libraries (GSL). This al-
gorithm consists of an iterative procedure using the method
of least squares after a linearization of the fitting curves. As
a consequence, both GSL header and library files must be
installed by the user before being able to run RESUMMINO.

The knowledge of the parton densities both in x-space
and N -space allows to compute all three components of
the hadronic differential cross section d2σ/dpT dM associ-
ated with the implemented physics processes, as described
in Sect. 2. Additional integration upon the invariant mass M

of the gaugino or slepton pair or upon their transverse mo-
mentum pT then leads to the singly differential cross sec-
tions dσ/dpT and dσ/dM , respectively. Furthermore, inte-
gration upon both variables allows to extract total production
rates. Let us note that in the case of threshold resummation,
the integration upon pT has been performed analytically and
there is no way to access doubly-differential cross sections.
All these integrations, together with the usual two-body and
three-body phase space integration relevant for the types of
computations performed in RESUMMINO, are achieved by
means of an adaptive multi-dimensional integration tech-
nique based on the importance sampling of the integration
domain [58]. To this aim, we again make use of the GSL
C++ libraries provided with the adaptive multi-dimensional
integration VEGAS algorithm [59].

Concerning the fixed order partonic cross sections, RE-
SUMMINO is based on the leading order results of Ref. [19]
and Refs. [20, 21] for slepton-pair and gaugino-pair pro-
duction, respectively. Next-to-leading order corrections in-
cluding both the QCD and supersymmetric QCD virtual di-
agrams are implemented as given in Ref. [17] and Ref. [18],
the associated finite pieces of the virtual loops being com-
puted by means of the QCDLOOP package [60]. The latter is
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fully embedded within RESUMMINO and thus does not need
to be installed by the user.

3.2 Installation

We recommend the user to always use the latest stable ver-
sion of RESUMMINO that can be downloaded from the web-
page

http://www.resummino.org

Once downloaded, the package consists of a compressed
tar file (resummino-x.x.x.tar.bz2 where x-x-x
stands for the version number) that must be unpacked,

tar xf resummino-x.x.x.tar.bz2

In the case all the prerequisite dependencies of RESUM-
MINO are present on the system (see Sect. 3.1), it is then
necessary to generate a Makefile appropriate to the sys-
tem configuration. This is done by issuing in a shell the com-
mands

cd resummino-x.x.x
cmake . [options]

The cmake program checks, in a first stage, that all
the dependencies mandatory for RESUMMINO are correctly
installed. It subsequently creates a series of Makefile
scripts allowing for the compilation of the RESUMMINO

source files and their linking with the dependencies. Two
optional arguments can be passed to the cmake script.
The first of these is related to the LHAPDF libraries. In
the case they have not been installed in the directories re-
ferred to by the environment variable LD_LIBRARY_PATH
(or DYLD_LIBRARY_PATH for MACOS systems), the
LHAPDF installation directory must be specified by means
of

-DLHAPDF=/path/to/lhapdf

This instructs cmake that the LHAPDF libraries are stored
in the directory /path/to/lhapdf/lib and the header
files in the directory /path/to/lhapdf/include.
Equivalently, these two directories can be provided sepa-
rately through the cmake options

-DLHAPDF_LIB_DIR=/path/to/lhapdf/lib
-DLHAPDF_INCLUDE_DIR
=/path/to/lhapdf/include

The second optional argument of the cmake script con-
sists of information on the directory where the RESUMMINO

executable has to be created (/path/to/install in the
example below). This is specified by including the option

-DCMAKE_INSTALL_PREFIX=/path/to/install

when issuing the cmake command.
The Makefile can eventually be executed in order to

generate a local release of RESUMMINO

make
make install

which can then be further used for physics applications.

3.3 Running the code

Once compiled, RESUMMINO can be immediately run from
a shell by issuing

resummino filename

where filename consists of the path to a file containing
the settings of the calculation to be performed. Three extra
modes of running can also be employed by adding an op-
tional flag when executing the code,

resummino --lo filename
resummino --nlo filename
resummino --parameter-log=params.log

filename

The first two choices above allow to respectively compute
leading-order and next-to-leading order quantities (without
matching to a resummation calculation). In contrast, the last
of the three options leads to the generation of a file denoted
by params.log that includes all the numerical values of
the parameters defining the supersymmetric benchmark sce-
nario under consideration.

Now, we turn to the way to encode the computation in-
formation in the input file to be parsed when executing the
code. First, the definition of the collider is passed to the pro-
gram by fixing the nature of the colliding beams and the
hadronic center-of-mass energy (to be given in GeV). This
is achieved by configuring the variables collider_type
and center_of_mass_energy, i.e., by including in the
input file lines of the form of

collider_type = proton-proton
center_of_mass_energy = 8000

Let us note that in the current version of the program,
only proton–proton and proton–antiproton collisions are
supported, so that the variable collider_type can
only be set to one of the values proton-proton and
proton-antiproton.

Next, the two produced superparticles must be referred
to by setting the variables particle1 and particle2
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to the relevant Particle Data Group (PDG) codes [61]. We
recall that since RESUMMINO is strictly dedicated to the
production of the electroweak superpartners, only slepton,
sneutrino, chargino and neutralino states are allowed as fi-
nal state particles. For instance, the production of a lightest
neutralino (whose the PDG code is 1000022) in association
with a negatively-charged next-to-lightest chargino (whose
the PDG code is −1000037) is encoded as

particle1 = 1000022
particle2 = -1000037

The numerical values of the masses of those particles, to-
gether with these of all the other supersymmetric model pa-
rameters, are provided by means of a file compliant with
the SLHA conventions [51, 52], as already mentioned in
Sect. 3.1. The path to this file is specified as the value of
the variable slha,

slha = slha.in

where in the example above, slha.in denotes a generic
SLHA file.

The last pieces of information to be included in the in-
put file define the type of computation to be performed and
the numerical precision to be reached. The variable result
allows to select the observable to compute by setting its
value to total (total cross section σ using the threshold-
resummation formalism), pt (transverse-momentum dis-
tribution dσ/dpT using the pT -resummation formalism),
ptj (transverse-momentum distribution dσ/dpT using the
joint-resummation formalism) or m (invariant-mass distribu-
tion dσ/dM using the threshold-resummation formalism).
For the last three possibilities, the numerical value of the
transverse-momentum and the one of the invariant-mass at
which the differential cross section must be respectively
evaluated have to be referred to via the variables pt and M.
For instance, implementing in the input file

result = pt
pt = 50

leads to the evaluation of dσ/dpT for pT = 50 GeV, while

result = M
M = 600

implies the evaluation of dσ/dM for M = 600 GeV. Fur-
thermore, having instead

result = total

defines the computation of the total cross section. The parton
density sets to be employed for both the leading-order and
higher-order components of the calculated observable are in-
dicated following the LHAPDF conventions which are based
on an ordering according to parton density group names and
numbers [55]. For instance, the command lines

pdf_lo = MSTW2008lo68cl
pdfset_lo = 0
pdf_nlo = MSTW2008nlo68cl
pdfset_nlo = 0

instruct RESUMMINO to use the best fits (the variables
pdfset_lo and pdfset_nlo are set to zero) of the
leading-order and next-to-leading-order fits of the MSTW
2008 parton densities [62] (as indicated by the variables
pdf_lo and pdf_nlo). Factorization and renormalization
scales are internally set to the sum of the mass of the pro-
duced particles, up to additional factors that must be spec-
ified in the input file via the intuitive variables mu_f and
mu_r. For the sake of the example, central scale choices
where scales are fixed to the average mass of the produced
particles are enforced by

mu_f = 0.5
mu_r = 0.5

Finally, the speed of the computation is driven by two pa-
rameters, the numerical precision to be reached and the max-
imum of iterations allowed when VEGAS is numerically
computing the various integrals presented in Sect. 2. These
are related to two input variables, precision, which takes
a real number as a value, and max_iter which refers to an
integer number. Hence, including in the input file the lines

precision = 0.001
max_iters = 3

allows for three iterations of VEGAS and demands a relative
precision of 0.1 %.

4 Illustrative examples

To illustrate the usage of RESUMMINO in a practical case,
we perform several calculations in the framework of one
representative constrained scenario of the Minimal Super-
symmetric Standard Model (cMSSM). As designing an ex-
perimentally non-excluded supersymmetric scenario is go-
ing beyond the scope of this work, we refer to an ear-
lier study performed by the LHC Physics Center at CERN
together with both the ATLAS and CMS supersymmetry
working groups [63]. This analysis is based on 1 fb−1 of
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LHC data, electroweak precision observables and flavor
physics constraints. Its conclusion consists of the proposal
of several reference points in the cMSSM parameter space
to be used for supersymmetric searches and phenomeno-
logical investigations. We adopt their 31st scenario, where
the ratio of the vacuum expectation values of the neutral
components of the two Higgs doublets tanβ is set to 40
and the Higgs supersymmetric mixing parameter μ is taken
positive. At the supersymmetry-breaking scale, the univer-
sal scalar mass m0 is fixed to 400 GeV, the universal gaug-
ino mass m1/2 to 600 GeV and the universal trilinear cou-
pling A0 to −500 GeV. After renormalization group run-
ning down to the electroweak scale, squarks and gluino are
found heavy, with masses of about 1.5 TeV, with the excep-
tion of the lightest stop and sbottom states. The large left-
right mixing inferred by the important negative value of A0

indeed lowers their masses to 940 GeV and 1100 GeV, re-
spectively. In contrast, all the other superpartners (neutrali-
nos, charginos, sleptons and sneutrinos) are lighter and lie
in the 250–825 GeV range. In the following, we further re-
strict ourselves to the production of the lightest electroweak
superpartners whose masses are approximately given by

mχ̃0
1

= 250 GeV, mχ̃0
2

= mχ̃±
1

= 480 GeV,

mẽL
= mμ̃L

= 565 GeV, mẽR
= mμ̃R

= 460 GeV,

mτ̃1 = 295 GeV, mτ̃2 = 535 GeV.

(35)

Considering the LHC collider, running at a center-of-
mass energy of 8 TeV, we focus in Table 1 on the largest total
cross sections associated with the production of any pair of
two of the particles under consideration. We indicate, in the

Table 1 Total cross sections associated with the production of any pair
of superpartners among the lightest gauginos and sleptons (�̃ equiva-
lently denotes mass-degenerate selectrons and smuons) in the context
of the LHC collider running at a center-of-mass energy of 8 TeV and
for the benchmark scenario 31 of Ref. [63]. The results are computed
at the leading order (LO) and next-to-leading order (NLO) of perturba-
tive QCD and then matched to threshold resummation at the next-to-
leading logarithmic accuracy (NLL+NLO). The corresponding scale
uncertainties are also indicated and resummed cross sections smaller
than 0.05 fb are omitted

Final state LO [fb] NLO [fb] NLO+NLL [fb]

χ̃0
1 χ̃0

1 0.1245+8.6%
−7.5% 0.1605+3.6%

−3.6% 0.1554+0.2%
−0.0%

χ̃0
2 χ̃0

2 0.0875+12%
−10% 0.1065+4.5%

−3.7% 0.1043+0.3%
−0.0%

χ̃+
1 χ̃0

2 4.3674+9.9%
−8.5% 4.8750+2.0%

−2.4% 4.8248+0.3%
−0.5%

χ̃−
1 χ̃0

2 1.4986+10%
−8.6% 1.7333+2.1%

−2.4% 1.7111+0.6%
−1.1%

χ̃+
1 χ̃−

1 2.8874+9.9%
−8.5% 3.3463+3.3%

−3.3% 3.3086+0.7%
−0.3%

�̃+
R �̃−

R 0.0749+11%
−9.1% 0.0868+2.7%

−3.0% 0.0854+0.2%
−0.4%

�̃+
L �̃−

L 0.0477+12%
−10% 0.0543+2.8%

−3.4% 0.0534+0.5%
−0.3%

τ̃+
1 τ̃−

1 0.5878+7.6%
−5.3% 0.7093+2.5%

−2.5% 0.6985+0.0%
−0.2%

second column of the table, results at the leading-order of
perturbative QCD, employing the leading order set of the
2008 MSTW parton densities [62]. In the third column, we
compute next-to-leading order predictions, convolving the
partonic cross section with the next-to-leading order set of
the same parton density fit. Finally, in the fourth column,
these last results are matched to threshold resummation. Al-
though this does not imply a sensible change in the cross
sections, we emphasize the importance of resummation by
showing the theoretical uncertainties that are obtained after
multiplying and dividing the central scale, set to the average
mass of the produced particles (see Sect. 3.3), by a factor
of two. Stabilization of the results can indeed be observed
once soft and collinear radiation is resummed to all orders
in αs . At the leading-order accuracy, the evolution of the
parton densities introduces a dependence on the factoriza-
tion scale through potentially large logarithmic terms, which
leads to an uncertainty of about ±10%. Although this spe-
cific source of uncertainties is reduced at the next-to-leading
order, new O(αs) diagrams imply an additional dependence
on the renormalization scale. This yields a total scale uncer-
tainty of a few percents. Finally, exponentiation, which al-
lows to account for the dominant higher-order contributions
within the Sudakov form factor, permits to render scale vari-
ations under a very good control, at the percent level.

In Fig. 1, we present transverse-momentum spectra re-
lated to the production of a selection of light chargino, neu-
tralino and slepton pairs at the LHC. We first compute the
predictions at O(αs) (dashed) and we next match the results
with resummation in the transverse-momentum (dotted) and
joint (plain) regimes. While the fixed-order results diverge
at small transverse momentum due to the large logarithmic
terms that have to be exponentiated, their resummation leads

Fig. 1 Transverse-momentum distributions for χ̃0
2 χ̃+

1 and τ̃+
1 τ̃−

1 pro-
duction at the LHC, running at a center-of-mass energy of 8 TeV, at
order O(αs) (dashed) and after matching the results with transverse–
momentum (dotted) and joint (plain) resummation
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to a finite (and physical) behavior with a pronounced peak
in the region where pT � 10 GeV. In this kinematical range,
the asymptotic expansion of the two resummation formu-
las are in good agreement with the O(αs) results since they
are all dominated by the logarithms. Therefore, matching
with resummation as presented in Eq. (4) allows for the reg-
ularization of the next-to-leading order predictions for small
values of pT . The same matching effects also imply that the
resummed predictions are sensibly larger than the fixed or-
der ones when the transverse momentum of the superpartner
pair lies within the intermediate pT -range of 20–60 GeV.
Finally, it is also shown that calculations using transverse-
momentum and joint resummation agrees reasonably well
with each other on the entire pT -range, although based on
different Sudakov form factors.

5 Summary

In this paper, we have introduced the RESUMMINO pack-
age, a C++ and FORTRAN program dedicated to preci-
sion calculations for gaugino and slepton pair production at
hadron colliders. The program allows to compute total cross
sections, invariant-mass and transverse-momentum distribu-
tions at leading order and next-to-leading order of perturba-
tive QCD. In addition, the results are then matched to a re-
summation of the large logarithmic terms appearing at fixed
order according to the transverse-momentum, threshold or
joint resummation formalism.

We have illustrated the usage of our code by adopting a
typical supersymmetric benchmark scenario for superpart-
ner searches and performing in this context various com-
putations by means of RESUMMINO. In the presented se-
lection of results, we have chosen to emphasize the major
advantages of making use of resummed predictions, i.e., a
drastic reduction of the associated scale uncertainties and a
regularization of the transverse-momentum spectrum in the
small-pT region.
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