326 research outputs found

    T cell stimulator cells, an efficient and versatile cellular system to assess the role of costimulatory ligands in the activation of human T cells.

    Get PDF
    It is well established that full activation of T cells requires the interaction of the TCR complex with the peptide-MHC complex (Signal 1) and additional signals (Signal 2). These second signals are generated by the interaction of costimulatory ligands expressed on antigen presenting cells with activating receptors on T cells. In addition, T cell responses are negatively regulated by inhibitory costimulatory pathways. Since professional antigen presenting cells (APC) harbour a plethora of stimulating and inhibitory surface molecules, the contribution of individual costimulatory molecules is difficult to assess on these cells. We have developed a system of stimulator cells that can give signal 1 to human T cells via a membrane bound anti-CD3 antibody fragment. By expressing human costimulatory ligands on these cells, their role in T cell activation processes can readily be analyzed. We demonstrate that T cell stimulator cells are excellent tools to study various aspects of human T cell costimulation, including the effects of immunomodulatory drugs or how costimulatory signals contribute to the in vitro expansion of T cells. T cell stimulator cells are especially suited for the functional evaluation of ligands that are implicated in costimulatory processes. In this study we have evaluated the role of the CD2 family member CD150 (SLAM) and the TNF family member TL1A (TNFSF15) in the activation of human T cells. Whereas our results do not point to a significant role of CD150 in T cell activation we found TL1A to potently costimulate human T cells. Taken together our results demonstrate that T cell stimulator cells are excellent tools to study various aspects of costimulatory processes

    Additive Protection by Antioxidant and Apoptosis-Inhibiting Effects on Mosquito Cells with Dengue 2 Virus Infection

    Get PDF
    Cytopathic effects (CPEs) in mosquito cells are generally trivial compared to those that occur in mammalian cells, which usually end up undergoing apoptosis during dengue virus (DENV) infection. However, oxidative stress was detected in both types of infected cells. Despite this, the survival of mosquito cells benefits from the upregulation of genes related to antioxidant defense, such as glutathione S transferase (GST). A second defense system, i.e., consisting of antiapoptotic effects, was also shown to play a role in protecting mosquito cells against DENV infection. This system is regulated by an inhibitor of apoptosis (IAP) that is an upstream regulator of caspases-9 and -3. DENV-infected C6/36 cells with double knockdown of GST and the IAP showed a synergistic effect on activation of these two caspases, causing a higher rate of apoptosis (>20%) than those with knockdown of each single gene (∼10%). It seems that the IAP acts as a second line of defense with an additional effect on the survival of mosquito cells with DENV infection. Compared to mammalian cells, residual hydrogen peroxide in DENV-infected C6/36 cells may signal for upregulation of the IAP. This novel finding sheds light on virus/cell interactions and their coevolution that may elucidate how mosquitoes can be a vector of DENV and probably most other arboviruses in nature

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    CDPKs CPK6 and CPK3 Function in ABA Regulation of Guard Cell S-Type Anion- and Ca(2+)- Permeable Channels and Stomatal Closure

    Get PDF
    Abscisic acid (ABA) signal transduction has been proposed to utilize cytosolic Ca(2+) in guard cell ion channel regulation. However, genetic mutants in Ca(2+) sensors that impair guard cell or plant ion channel signaling responses have not been identified, and whether Ca(2+)-independent ABA signaling mechanisms suffice for a full response remains unclear. Calcium-dependent protein kinases (CDPKs) have been proposed to contribute to central signal transduction responses in plants. However, no Arabidopsis CDPK gene disruption mutant phenotype has been reported to date, likely due to overlapping redundancies in CDPKs. Two Arabidopsis guard cell–expressed CDPK genes, CPK3 and CPK6, showed gene disruption phenotypes. ABA and Ca(2+) activation of slow-type anion channels and, interestingly, ABA activation of plasma membrane Ca(2+)-permeable channels were impaired in independent alleles of single and double cpk3cpk6 mutant guard cells. Furthermore, ABA- and Ca(2+)-induced stomatal closing were partially impaired in these cpk3cpk6 mutant alleles. However, rapid-type anion channel current activity was not affected, consistent with the partial stomatal closing response in double mutants via a proposed branched signaling network. Imposed Ca(2+) oscillation experiments revealed that Ca(2+)-reactive stomatal closure was reduced in CDPK double mutant plants. However, long-lasting Ca(2+)-programmed stomatal closure was not impaired, providing genetic evidence for a functional separation of these two modes of Ca(2+)-induced stomatal closing. Our findings show important functions of the CPK6 and CPK3 CDPKs in guard cell ion channel regulation and provide genetic evidence for calcium sensors that transduce stomatal ABA signaling

    Anticancer effects of lactoferrin: underlying mechanisms and future trends in cancer therapy

    Get PDF
    Lactoferrin has been widely studied over the last 70 years, and its role in diverse biological functions is now well known and generally accepted by the scientific community. Usually, alterations of the lactoferrin gene in cells are associated with an increased incidence of cancer. Several studies suggest that exogenous treatment with lactoferrin and its derivatives can efficiently inhibit the growth of tumors and reduce susceptibility to cancer. None of these studies, however, reported a consistent outcome with regard to the mechanisms underlying the anticancer effects of lactoferrin. In this review, the association of lactoferrin with cancer is thoroughly discussed, from lactoferrin gene expression to the potential use of lactoferrin in cancer therapy. Lactoferrin cytotoxicity against several cancers is reported to occur in distinct ways under different conditions, namely by cell membrane disruption, apoptosis induction, cell cycle arrest, and cell immunoreaction. Based on these mechanisms, new strategies to improve the anticancer effects of the lactoferrin protein and/or its derivatives are proposed. The potential for lactoferrin in the field of cancer research (including as a chemotherapeutic agent in cancer therapy) is also discussed.Funding. Financial support was received from the Erasmus Mundus External Cooperation Window (Y), the Strategic Project PEst-OE/EQB/LA0023/2013, and the Fundacao para a Ciencia e a Tecnologia (project reference RECI/BBB-EBI/0179/2012; project no. FCOMP-01-0124-FEDER-027462)
    corecore