104 research outputs found

    Effects of the root extract of Dipsacus asperoides (Caprifoliaceae) on locomotor function and inflammation following spinal cord injury in rats

    Get PDF
    Purpose: The study was performed to determine the effect of Dipsacus asperoides (roots), commonly known as Xu Duan, on rats with spinal cord injury (SCI).Methods: All the animals were separated into 3 groups: normal control; a group that received Dipsacus asperoides treatment after spinal injury, and a group that received phosphate-buffered saline after SCI. These groups allowed for determination of the effect of Dipsacus asperoides treatment on SCI-injured rats. Evaluation of locomotor function restoration based on Basso–Beattie–Bresnahan score was carried out while expressions of I-kBα and NF-kB p65 were estimated. Evaluation of pro-apoptotic protein Bax and anti-apoptotic protein Bcl-2 levels was also carried by Western blotting and densitometry.Results: The results showed that 10-mg/kg/day dose of Dipsacus asperoides restored locomotor function in rats after a period of 4 weeks. The treatment also decreased expressions of I-kBα, NF-kB p65 and Bax, but significantly increased expression of Bcl-2 (p < 0.01) in treated rats, compared to untreated rats.Conclusion: The results indicate that treatment with Dipsacus asperoides extract effectively mitigates spinal cord injury by attenuating inflammation and apoptosis in SCI rats.Keywords: Spinal cord injury, IKK-NFkB pathway, Bax, Bcl-2, Xu Duan, Apoptosi

    Enzyme-Catalytic Self-Triggered Release of Drugs from a Nanosystem for Efficient Delivery to Nuclei of Tumor Cells.

    Get PDF
    Stimulus-responsive drug delivery nanosystems (DDSs) are of great significance in improving cancer therapy for intelligent control over drug release. However, among them, many DDSs are unable to realize rapid and sufficient drug release because most internal stimulants might be consumed during the release process. To address the plight, an abundant supply of stimulants is highly desirable. Herein, a core crosslinked pullulan-di-(4,1-hydroxybenzylene)diselenide nanosystem, which could generate abundant exogenous-stimulant reactive oxygen species (ROS) via tumor-specific NAD(P)H:quinone oxidoreductase-1 (NQO1) catalysis, was constructed by the encapsulation of β-lapachone. The enzyme-catalytic-generated ROS induced self-triggered cascade amplification release of loaded doxorubicin (DOX) in the tumor cells, thus achieving efficient delivery of DOX to the nuclei of tumor cells by breaking the diselenide bond of the nanosystem. As a result, the antitumor effect of this nanosystem was significantly improved in the HepG2 xenograft model. In general, this study offers a new paradigm for utilizing the interaction between the loaded agent and carrier in the tumor cells to obtain self-triggered drug release in the design of DDSs for enhanced cancer therapy

    Highly accurate and reliable ultrasonic focusing capability in heterogeneous media using a spherical cavity transducer

    Get PDF
    Introduction: Focused ultrasound ablation surgery (FUAS) has been emerging to treat a wide range of conditions non-invasively and effectively with promising therapeutic outcomes. The focusing capability of an ultrasound transducer (i.e., focus shift, beam distortion, and acoustic pressure at the focus) determines the ablation effects. However, the focus shift and focal beam distortion after ultrasound propagating through multi-layered heterogeneous viscoelastic biological tissues become significant and are found to deteriorate the performance of FUAS in clinics.Methods: To achieve an accurate and reliable focal field among patients with large variations in the anatomical structures and properties, a spherical cavity transducer with open ends and sub-wavelength focal size (Li et al., APL, 2013,102:204102) was applied here. Both experimental measurements and numerical simulations were performed to characterize the acoustic fields of the spherical cavity transducer in water, the multi-layered concentric cylindrical phantom, and the heterogeneous tissue model (an adult male pelvis enclosed by porcine skin, fat, and muscle) and then compared with those of a conventional concave transducer at the same electrical power output.Results: It is found that standing-wave focusing using the spherical cavity transducer results in much less focus shift (0.25λ vs. 1.67λ) along the transducer axis and focal beam distortion (−6 dB beam area of 0.71 mm2vs. 4.72 mm2 in water and 2.55 mm2vs. 17.30 mm2 in tissue) in the focal plane but higher pressure focusing gain (40.05 dB vs. 33.61 dB in tissue).Discussion: Such a highly accurate and reliable focal field is due to the excitation at an appropriate eigen-frequency of the spherical cavity with the varied media inside rather than the reverberation from the concave surface. Together with its sub-wavelength focal size, the spherical cavity transducer is technically advantageous in comparison to the concave one. The improved focusing capability would benefit ultrasound exposure for not only safer and more effective FUAS in clinics, but also broad acoustic applications

    The Role of Soy in Vegetarian Diets

    Get PDF
    Soyfoods have long been prized among vegetarians for both their high protein content and versatility. Soybeans differ markedly in macronutrient content from other legumes, being much higher in fat and protein, and lower in carbohydrate. In recent years however, soyfoods and specific soybean constituents, especially isoflavones, have been the subject of an impressive amount of research. Nearly 2,000 soy-related papers are published annually. This research has focused primarily on the benefits that soyfoods may provide independent of their nutrient content. There is particular interest in the role that soyfoods have in reducing risk of heart disease, osteoporosis and certain forms of cancer. However, the estrogen-like effects of isoflavones observed in animal studies have also raised concerns about potential harmful effects of soyfood consumption. This review addresses questions related to soy and chronic disease risk, provides recommendations for optimal intakes, and discusses potential contraindications. As reviewed, the evidence indicates that, with the exception of those individuals allergic to soy protein, soyfoods can play a beneficial role in the diets of vegetarians. Concerns about adverse effects are not supported by the clinical or epidemiologic literature. Based on the soy intake associated with health benefits in the epidemiologic studies and the benefits noted in clinical trials, optimal adult soy intake would appear to be between two and four servings per day

    Anti-Erosion Influences of Surface Roughness on Sloping Agricultural Land in the Loess Plateau, Northwest China

    No full text
    The roughness of surface soil and the benefits produced by tillage for slope runoff and sediment reduction have attracted considerable interest; however, there are inconsistencies in existing research results. In this study, we have studied the anti-erosion influences of several typical tillage practices on both runoff and sediment generation in areas of sloping farmland in the Loess Plateau of northwest China. Rough surfaces were prepared manually, according to the surface microtopography of the plateau’s sloping farmland, using four tillage practices; a smooth surface was used as a control. Rainfall simulation experiments were performed using three rainfall intensities and five slope gradients. A path analysis was used to analyze the interactive effects of the slope gradient, rainfall intensity, and the surface roughness on the sediment yield and runoff volume. According to our findings, the gradient of a slope and the intensity of the rainfall both had a positive effect, while the surface roughness had a negative effect; the rate of 40.8% and 21.0% was lower than the values under CK on sediment yield and runoff volume. The interaction between the rainfall intensity and surface roughness always had a runoff reduction effect. Conversely, there was a critical slope gradient between 5° and 10° for sediment yield. The interaction between the slope gradient and surface roughness also had a runoff reduction effect, which was diminished by increasing the rainfall intensity. However, their interactive influence on sediment yield was inconsistent, with a critical slope gradient between 10° and 15°. Based on the comprehensive interactive effects among all three factors, we concluded that rainfall intensity, slope gradient, and surface roughness collectively played a crucial role in promoting runoff and sediment generation under tillage. The results support soil and water conservation by tillage on the sloping farmlands of the Loess Plateau

    Anti-Erosion Influences of Surface Roughness on Sloping Agricultural Land in the Loess Plateau, Northwest China

    No full text
    The roughness of surface soil and the benefits produced by tillage for slope runoff and sediment reduction have attracted considerable interest; however, there are inconsistencies in existing research results. In this study, we have studied the anti-erosion influences of several typical tillage practices on both runoff and sediment generation in areas of sloping farmland in the Loess Plateau of northwest China. Rough surfaces were prepared manually, according to the surface microtopography of the plateau’s sloping farmland, using four tillage practices; a smooth surface was used as a control. Rainfall simulation experiments were performed using three rainfall intensities and five slope gradients. A path analysis was used to analyze the interactive effects of the slope gradient, rainfall intensity, and the surface roughness on the sediment yield and runoff volume. According to our findings, the gradient of a slope and the intensity of the rainfall both had a positive effect, while the surface roughness had a negative effect; the rate of 40.8% and 21.0% was lower than the values under CK on sediment yield and runoff volume. The interaction between the rainfall intensity and surface roughness always had a runoff reduction effect. Conversely, there was a critical slope gradient between 5° and 10° for sediment yield. The interaction between the slope gradient and surface roughness also had a runoff reduction effect, which was diminished by increasing the rainfall intensity. However, their interactive influence on sediment yield was inconsistent, with a critical slope gradient between 10° and 15°. Based on the comprehensive interactive effects among all three factors, we concluded that rainfall intensity, slope gradient, and surface roughness collectively played a crucial role in promoting runoff and sediment generation under tillage. The results support soil and water conservation by tillage on the sloping farmlands of the Loess Plateau

    Effects of crop-slope interaction on slope runoff and erosion in the Loess Plateau

    No full text
    Crops are the most important ground cover on slope farmland and have a significant impact on the soil erosion. But soil erosion on slope farmland is also affected by many other factors, such as topography and rainfall. In order to explore the effect of crop growth on soil erosion on different slope gradient of slope farmland, and analyze the interaction of crop growth and slope gradient on soil erosion, this study used artificial simulated rainfall to observe the runoff rates and soil loss amounts under different slope gradients for maize, soybeans, and winter wheat in different growth stages. Results showed that crops and slope gradient both significantly affected production and development of slope runoff. Compared with bare land, mean runoff rate on slopes was reduced by 24%, 32%, and 94% respectively, and sediment yield was decreased by 44%, 55%, and 99% respectively on maize, soybean, and winter wheat fields. Inhibitory effects of crops on slope runoff rate and sediment yield were enhanced with crop growth and decreased with increasing slope gradient. Crop growth and coverage could offset the impact of increasing slope gradient on runoff and sediment to some extent and reduced water and soil loss on slopes. Sediment yield was produced largely when the slope gradient was greater than 10 degrees on maize and soybean fields, but soil erosion was effectively inhibited when the slope gradient was less than 15 degrees on winter wheat fields. Crop planting can effectively reduce the impact of slope gradient on soil erosion, especially during the flourishing period of crop growth
    corecore