319 research outputs found

    SOLUTION STRUCTURE OF THE TOXIC E. COLI PEPTIDE, TISB

    Get PDF
    poster abstractAntibiotics act by interfering in bacterial metabolism. Thus, antibiotics are only effective against metabolically active bacteria while dormant cells are highly tolerant to antibiotics. Such persistent bacterial cells may be the main culprits in chronic infectious diseases resistance to antimicrobial thera-py. In Escherichia coli, expression of a toxic peptide, TisB, sends cells into dormancy by decreasing the proton motive force thus decreasing ATP levels. TisB is a 29 amino acid residue peptide with 70% hydrophobic residues. It has a predicted alpha helical transmembrane domain spanning residues 6 - 28. In membrane channel studies, ion transport is observed with TisB and with some TisB mutants. As a preliminary to combining multi-dimensional NMR spectroscopy with circular dichroism to determine the structure of the TisB membrane ion transport complex in lipid micelles, NMR spectroscopy is used to determine the structure of TisB in ethanol

    DNA methylation of the IGF2/H19 imprinting control region and adiposity distribution in young adults

    Get PDF
    BACKGROUND: The insulin-like growth factor 2 (IGF2) and H19 imprinted genes control growth and body composition. Adverse in-utero environments have been associated with obesity-related diseases and linked with altered DNA methylation at the IGF2/H19 locus. Postnatally, methylation at the IGF2/H19 imprinting control region (ICR) has been linked with cerebellum weight. We aimed to investigate whether decreased IGF2/H19 ICR methylation is associated with decreased birth and childhood anthropometry and increased contemporaneous adiposity. DNA methylation in peripheral blood (n = 315) at 17 years old was measured at 12 cytosine-phosphate-guanine sites (CpGs), analysed as Sequenom MassARRAY EpiTYPER units within the IGF2/H19 ICR. Birth size, childhood head circumference (HC) at six time-points and anthropometry at age 17 years were measured. DNA methylation was investigated for its association with anthropometry using linear regression. RESULTS: The principal component of IGF2/H19 ICR DNA methylation (representing mean methylation across all CpG units) positively correlated with skin fold thickness (at four CpG units) (P-values between 0.04 to 0.001) and subcutaneous adiposity (P = 0.023) at age 17, but not with weight, height, BMI, waist circumference or visceral adiposity. IGF2/H19 methylation did not associate with birth weight, length or HC, but CpG unit 13 to 14 methylation was negatively associated with HC between 1 and 10 years. β-coefficients of four out of five remaining CpG units also estimated lower methylation with increasing childhood HC. CONCLUSIONS: As greater IGF2/H19 methylation was associated with greater subcutaneous fat measures, but not overall, visceral or central adiposity, we hypothesize that obesogenic pressures in youth result in excess fat being preferentially stored in peripheral fat depots via the IGF2/H19 domain. Secondly, as IGF2/H19 methylation was not associated with birth size but negatively with early childhood HC, we hypothesize that the HC may be a more sensitive marker of early life programming of the IGF axis and of fetal physiology than birth size. To verify this, investigations of the dynamics of IGF2/H19 methylation and expression from birth to adolescence are required

    Increased Glycogen Synthase Kinase-3β mRNA Level in the Hippocampus of Patients with Major Depression: A Study Using the Stanley Neuropathology Consortium Integrative Database

    Get PDF
    Objective Glycogen synthase kinase-3 beta (GSK-3 beta) has become recognized as a broadly influential enzyme affecting diverse range of biological functions, including gene expression, cellular architecture, and apoptosis. The results of previous studies suggest that GSK-3 beta activity may be increased in the brain of patients with major depressive disorders (MDD). A recent animal study reported increased GSK-3 beta messenger ribonucleic acid (mRNA) level in the hippocampus of those with depression. However, few studies have investigated GSK-3 beta activity in the brain of patients with MDD. Methods In order to test whether patients with MDD have an increase in GSK-3 beta activity in the brain compared to normal controls, we explored GSK-3 beta expression level in all brain regions by using the Stanley Neuropathology Consortium Integrative Database (SNCID), which is a web-based method of integrating the Stanley Medical Research Institute data sets. Results The level of GSK-3 beta mRNA expression in the hippocampus was significantly increased in the MDD group (n=8) compared with the control group (n=12, p<0.05). Spearman's test also reveals that GSK-3 beta mRNA expression levels were significantly correlated with nitric oxide synthase 1 (NOS1)(rho=0.70, p<0.0001) and stathmin-like 3 (STMN3)(rho=0.70, p<0.0001) in the hippocampus. Conclusion Our results correspond with the results of previous animal studies that reported increased GSK-3 beta activity in the hippocampus of those with depression. Our findings also suggest that oxidative stress-induced neuronal cell death and abnormal synaptic plasticity in the hippocampus may play important roles in the pathophysiology of major depression. Psychiatry Investig 2010;7:202-207This research was supported by a grant of the Korea Health 21 R & D project, Ministry of Health and Welfare, Republic of Korea (A050047). We would like to thank the SMRI collaborators who allow SNCID to be freely available to all users, and also all investigators generating original data in the SMRIDB, in particular Dr. William Deakin and Carla Toro

    Lifecourse Childhood Adiposity Trajectories Associated With Adolescent Insulin Resistance

    Get PDF
    OBJECTIVE In the light of the obesity epidemic, we aimed to characterize novel childhood adiposity trajectories from birth to age 14 years and to determine their relation to adolescent insulin resistance. RESEARCH DESIGN ANDMETHODS A total of 1,197 Australian children with cardiovascular/ metabolic proiling at age 14 years were studied serially from birth to age 14 years.Semiparametric mixture modeling was applied to anthropometric data over eight time points to generate adiposity trajectories of z scores (weight-for-height and BMI). Fasting insulin and homeostasis model assessment of insulin resistance (HOMA-IR) were compared at age 14 years between adiposity trajectories. RESULTS Seven adiposity trajectories were identified. Three (two rising and one chronic high adiposity) trajectories comprised 32% of the population and were associated with significantly higher fasting insulin and HOMA-IR compared with a reference trajectory group (with longitudinal adiposity z scores of approximately zero). There was a significant sex by trajectory group interaction (P,0.001). Girls within a rising trajectory fromlow tomoderate adiposity did not show increased insulin resistance. Maternal obesity, excessive weight gain during pregnancy,and gestational diabetes were more prevalent in the chronic high adiposity trajectory. CONCLUSIONS A range of childhood adiposity trajectories exist. The greatest insulin resistance at age 14 years is seen in those with increasing trajectories regardless of birth weight and in high birth weight infants whose adiposity remains high. Public health professionals should urgently target both excessive weight gain in early childhood across all birth weights and maternal obesity and excessive weight gain during pregnancy

    Regulation of GSK-3 Activity as A Shared Mechanism in Psychiatric Disorders

    Full text link
    Serin/Treonin kinaz ailesinin üyelerinden bir kinaz olarak ilk kez glikojen sentaz’ı inhibe ettiği keşfedilen glikojen sentaz kinaz-3 (GSK-3), günümüzde bilinen 50’den fazla substratı ile birçok hücre içi düzenleyici mekanizmada görev alan geniş etki spektrumlu bir enzim olarak kabul edilmektedir. GSK-3’ün memelilerde GSK-3α ve GSK-3β olmak üzere yapısal olarak yüksek homoloji gösteren iki izoformu bulunmaktadır. Her iki izoform birçok dokuda yaygın dağılım göstermekle beraber, en yüksek oranda beyinde bulunmakta ve genellikle benzer fonksiyonlar göstermektedirler. Diğer protein kinazların aksine GSK-3 uyarılmamış hücrede yapısal olarak aktif yani defosforile halde bulur. Protein kinaz A (PKA), protein kinaz B (PKB;AKT) ve protein kinaz C (PKC) gibi diğer protein kinazlarla fosforilasyona uğrayarak olarak inaktive edilir. Günümüzde artmış GSK-3 aktivitesinin major depresyon, bipolar bozukluk, hiperaktivite bozuklukları gibi hastalıklar ve şizofreni oluşumunda rol oynayabileceğine ilişkin önemli bulgular mevcuttur. Bu nedenle söz konusu psikiyatrik hastalıklarda arttığı gösterilen GSK-3 aktivitesinin azaltılmasının tedavide umut verici bir yaklaşım olabileceği kabul edilebilir. Bu gözden geçirme çalışmasında yukarıda sözü edilen psikiyatrik hastalıkların oluşmasında görev alan GSK-3 aracılı mekanizmalara kısaca değinilerek GSK-3’ün aktivitesinin düzenlenmesinde rol oynadığı gösterilen klinikte kullanılan ilaçlara yer verilmiştir. Anahtar sözcükler: GSK-3, depresyon, bipolar bozukluk, şizofren

    A model describing diffusion in prostate cancer

    Get PDF
    PURPOSE: Quantitative diffusion MRI has frequently been studied as a means of grading prostate cancer. Interpretation of results is complicated by the nature of prostate tissue, which consists of four distinct compartments: vascular, ductal lumen, epithelium, and stroma. Current diffusion measurements are an ill-defined weighted average of these compartments. In this study, prostate diffusion is analyzed in terms of a model that takes explicit account of tissue compartmentalization, exchange effects, and the non-Gaussian behavior of tissue diffusion.  METHOD: The model assumes that exchange between the cellular (ie, stromal plus epithelial) and the vascular and ductal compartments is slow. Ductal and cellular diffusion characteristics are estimated by Monte Carlo simulation and a two-compartment exchange model, respectively. Vascular pseudodiffusion is represented by an additional signal at b = 0. Most model parameters are obtained either from published data or by comparing model predictions with the published results from 41 studies. Model prediction error is estimated using 10-fold cross-validation.  RESULTS: Agreement between model predictions and published results is good. The model satisfactorily explains the variability of ADC estimates found in the literature.  CONCLUSION: A reliable model that predicts the diffusion behavior of benign and cancerous prostate tissue of different Gleason scores has been developed. Magn Reson Med, 2016. © 2016 Wiley Periodicals, Inc

    Alcohol consumption and body weight

    Full text link
    The number of Americans who are overweight or obese has reached epidemic proportions. Elevated weight is associated with health problems and increased medical expenditures. This paper analyzes Waves 1 and 2 of the National Epidemiological Survey of Alcohol and Related Conditions to investigate the role of alcohol consumption in weight gain. Alcohol is not only an addictive substance but also a high-calorie beverage that can interfere with metabolic function and cognitive processes. Because men and women differ in the type and amount of alcohol they consume, in the biological effects they experience as a result of alcohol consumption, and in the consequences they face as a result of obesity, we expect our results to differ by gender. We use first-difference models of body mass index (BMI) and alcohol consumption (frequency and intensity) to control for time-invariant unobservable factors that may influence changes in both alcohol use and weight status. Increasing frequency and intensity of alcohol use is associated with statistically significant yet quantitatively small weight gain for men but not for women. Moreover, the first-difference results are much smaller in magnitude and sometimes different in sign compared with the benchmark pooled cross-sectional estimates. Copyright © 2009 John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77424/1/1521_ftp.pd

    Genetic Deficiency of Glycogen Synthase Kinase-3β Corrects Diabetes in Mouse Models of Insulin Resistance

    Get PDF
    Despite treatment with agents that enhance β-cell function and insulin action, reduction in β-cell mass is relentless in patients with insulin resistance and type 2 diabetes mellitus. Insulin resistance is characterized by impaired signaling through the insulin/insulin receptor/insulin receptor substrate/PI-3K/Akt pathway, leading to elevation of negatively regulated substrates such as glycogen synthase kinase-3β (Gsk-3β). When elevated, this enzyme has antiproliferative and proapoptotic properties. In these studies, we designed experiments to determine the contribution of Gsk-3β to regulation of β-cell mass in two mouse models of insulin resistance. Mice lacking one allele of the insulin receptor (Ir+/−) exhibit insulin resistance and a doubling of β-cell mass. Crossing these mice with those having haploinsufficiency for Gsk-3β (Gsk-3β+/−) reduced insulin resistance by augmenting whole-body glucose disposal, and significantly reduced β-cell mass. In the second model, mice missing two alleles of the insulin receptor substrate 2 (Irs2−/−), like the Ir+/− mice, are insulin resistant, but develop profound β-cell loss, resulting in early diabetes. We found that islets from these mice had a 4-fold elevation of Gsk-3β activity associated with a marked reduction of β-cell proliferation and increased apoptosis. Irs2−/− mice crossed with Gsk-3β+/− mice preserved β-cell mass by reversing the negative effects on proliferation and apoptosis, preventing onset of diabetes. Previous studies had shown that islets of Irs2−/− mice had increased cyclin-dependent kinase inhibitor p27kip1 that was limiting for β-cell replication, and reduced Pdx1 levels associated with increased cell death. Preservation of β-cell mass in Gsk-3β+/−Irs2−/− mice was accompanied by suppressed p27kip1 levels and increased Pdx1 levels. To separate peripheral versus β-cell–specific effects of reduction of Gsk3β activity on preservation of β-cell mass, mice homozygous for a floxed Gsk-3β allele (Gsk-3F/F) were then crossed with rat insulin promoter-Cre (RIP-Cre) mice to produce β-cell–specific knockout of Gsk-3β (βGsk-3β−/−). Like Gsk-3β+/− mice, βGsk-3β−/− mice also prevented the diabetes of the Irs2−/− mice. The results of these studies now define a new, negatively regulated substrate of the insulin signaling pathway specifically within β-cells that when elevated, can impair replication and increase apoptosis, resulting in loss of β-cells and diabetes. These results thus form the rationale for developing agents to inhibit this enzyme in obese insulin-resistant individuals to preserve β-cells and prevent diabetes onset

    Dietary fructose in relation to blood pressure and serum uric acid in adolescent boys and girls

    Get PDF
    Evidence that fructose intake may modify blood pressure is generally limited to adult populations. This study examined cross-sectional associations between dietary intake of fructose, serum uric acid and blood pressure in 814 adolescents aged 13–15 years participating in the Western Australian Pregnancy Cohort (Raine) Study. Energy-adjusted fructose intake was derived from 3-day food records, serum uric acid concentration was assessed using fasting blood and resting blood pressure was determined using repeated oscillometric readings. In multivariate linear regression models, we did not see a significant association between fructose and blood pressure in boys or girls. In boys, fructose intake was independently associated with serum uric acid (P<0.01), and serum uric acid was independently associated with systolic blood pressure (P<0.01) and mean arterial pressure (P<0.001). Although there are independent associations, there is no direct relationship between fructose intake and blood pressure. Our data suggest that gender may influence these relationships in adolescence, with significant associations observed more frequently in boys than girls

    The regulation and deregulation of Wnt signaling by PARK genes in health and disease

    Get PDF
    Wingless/Int (Wnt) signaling pathways are signal transduction mechanisms that have been widely studied in the field of embryogenesis. Recent work has established a critical role for these pathways in brain development, especially of midbrain dopaminergic neurones. However, the fundamental importance of Wnt signaling for the normal function of mature neurones in the adult central nervous system has also lately been demonstrated by an increasing number of studies. Parkinson's disease (PD) is the second most prevalent neurodegenerative disease worldwide and is currently incurable. This debilitating disease is characterized by the progressive loss of a subset of midbrain dopaminergic neurones in the substantia nigra leading to typical extrapyramidal motor symptoms. The aetiology of PD is poorly understood but work performed over the last two decades has identified a growing number of genetic defects that underlie this condition. Here we review a growing body of data connecting genes implicated in PD--most notably the PARK genes--with Wnt signaling. These observations provide clues to the normal function of these proteins in healthy neurones and suggest that deregulated Wnt signaling might be a frequent pathomechanism leading to PD. These observations have implications for the pathogenesis and treatment of neurodegenerative diseases in general
    corecore