9 research outputs found

    Ribozyme-mediated synthesis of circular RNA

    No full text
    Circular RNAs may be synthesized by inserting DNA fragments into a plasmid containing sequences having the capability of spontaneous cleavage and self-circularization. Insertion of the DNA fragments allows RNAs of predetermined size to be constructed. In addition, a two-dimensional polyacrylamide gel electrophoresis system having a second dimension more highly cross-linked than the first dimension permits the separation and analysis as well as the precise sizing of both linear and circular RNAs produced by the synthetic method

    Multiplex real-time PCR for detection, identification and quantification of ‘Candidatus Liberibacter solanacearum’ in potato plants with zebra chip

    Get PDF
    The new Liberibacter species, ‘Candidatus Liberibacter solanacearum’ (Lso) recently associated with potato/tomato psyllid-transmitted diseases in tomato and capsicum in New Zealand, was found to be consistently associated with a newly emerging potato zebra chip (ZC) disease in Texas and other southwestern states in the USA. A species-specific primer LsoF was developed for both quantitative real-time PCR (qPCR) and conventional PCR (cPCR) to detect and quantify Lso in infected samples. In multiplex qPCR, a plant cytochrome oxidase (COX)-based probe-primer set was used as a positive internal control for host plants, which could be used to reliably access the DNA extraction quality and to normalize qPCR data for accurate quantification of the bacterial populations in environment samples. Neither the qPCR nor the cPCR using the primer and/or probe sets with LsoF reacted with other Liberibacter species infecting citrus or other potato pathogens. The low detection limit of the multiplex qPCR was about 20 copies of the target 16S rDNA templates per reaction for field samples. Lso was readily detected and quantified in various tissues of ZCaffected potato plants collected from fields in Texas. A thorough but uneven colonization of Lso was revealed in various tissues of potato plants. The highest Lso populations were about 3×108 genomes/g tissue in the root, which were 3-order higher than those in the above-ground tissues of potato plants. The Lso bacterial populations were normally distributed across the ZC-affected potato plants collected from fields in Texas, with 60% of ZC-affected potato plants harboring an average Lso population from 105 to 106 genomes/g tissue, 4% of plants hosting above 107 Lso genomes/g tissue, and 8% of plants holding below 103 Lso genomes/g tissue. The rapid, sensitive, specific and reliable multiplex qPCR showed its potential to become a powerful tool for early detection and quantification of the new Liberibacter species associated with potato ZC, and will be very useful for the potato quarantine programs and seed potato certification programs to ensure the availability of clean seed potato stocks and also for epidemiological studies on the disease

    Multiplex real-time PCR for detection, identification and quantification of ‘Candidatus Liberibacter solanacearum’ in potato plants with zebra chip

    Get PDF
    The new Liberibacter species, ‘Candidatus Liberibacter solanacearum’ (Lso) recently associated with potato/tomato psyllid-transmitted diseases in tomato and capsicum in New Zealand, was found to be consistently associated with a newly emerging potato zebra chip (ZC) disease in Texas and other southwestern states in the USA. A species-specific primer LsoF was developed for both quantitative real-time PCR (qPCR) and conventional PCR (cPCR) to detect and quantify Lso in infected samples. In multiplex qPCR, a plant cytochrome oxidase (COX)-based probe-primer set was used as a positive internal control for host plants, which could be used to reliably access the DNA extraction quality and to normalize qPCR data for accurate quantification of the bacterial populations in environment samples. Neither the qPCR nor the cPCR using the primer and/or probe sets with LsoF reacted with other Liberibacter species infecting citrus or other potato pathogens. The low detection limit of the multiplex qPCR was about 20 copies of the target 16S rDNA templates per reaction for field samples. Lso was readily detected and quantified in various tissues of ZCaffected potato plants collected from fields in Texas. A thorough but uneven colonization of Lso was revealed in various tissues of potato plants. The highest Lso populations were about 3×108 genomes/g tissue in the root, which were 3-order higher than those in the above-ground tissues of potato plants. The Lso bacterial populations were normally distributed across the ZC-affected potato plants collected from fields in Texas, with 60% of ZC-affected potato plants harboring an average Lso population from 105 to 106 genomes/g tissue, 4% of plants hosting above 107 Lso genomes/g tissue, and 8% of plants holding below 103 Lso genomes/g tissue. The rapid, sensitive, specific and reliable multiplex qPCR showed its potential to become a powerful tool for early detection and quantification of the new Liberibacter species associated with potato ZC, and will be very useful for the potato quarantine programs and seed potato certification programs to ensure the availability of clean seed potato stocks and also for epidemiological studies on the disease

    ‘HoneySweet’ (C5), the First Genetically Engineered Plum pox virus–resistant Plum (Prunus domestica L.) Cultivar

    Get PDF
    Origin ‘HoneySweet’ originated as a seedling from the open pollination of ‘Bluebyrd’ plum (Scorza and Fogle, 1999). The pollen parent of ‘HoneySweet’ is unknown. ‘HoneySweet’ was originally selected in vitro as a regenerated shoot from a hypocotyl slice that had been transfected with Agrobacterium tumefaciens EHA 101 carrying the plasmid pGA482GG/PPV-CP-33 (Scorza et al., 1994). The regenerated, transgenic shoot, coded as C5, along with other transgenic shoots, was rooted in vitro and transferred to a greenhouse. Following greenhouse testing using graft and aphid inoculations with the M and D strains of Plum pox virus (PPV), C5 (later patented as ‘HoneySweet’), was asexually propagated by bud grafting on to standard rootstocks, including Prunus persica (GF305 peach seedlings), Prunus domestica (European plum seedlings), Prunus myrobalan, and GF 8-1 (Prunus cerasifera × P. munsoniana). An overview of the development of ‘HoneySweet’ plum and molecular characterization can be found in Scorza et al. (2013a)

    Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19

    No full text
    BackgroundWe previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15-20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in similar to 80% of cases.MethodsWe report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded.ResultsNo gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5-528.7, P=1.1x10(-4)) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR=3.70[95%CI 1.3-8.2], P=2.1x10(-4)). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR=19.65[95%CI 2.1-2635.4], P=3.4x10(-3)), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR=4.40[9%CI 2.3-8.4], P=7.7x10(-8)). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD]=43.3 [20.3] years) than the other patients (56.0 [17.3] years; P=1.68x10(-5)).ConclusionsRare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old
    corecore