35 research outputs found
Regulation der Expression und Freisetzung des Fas-Liganden
Der Fas-Ligand (FasL) spielt als prototypischer Todesfaktor eine zentrale Rolle bei der Regulation der Immunzell-Homöostase und -Effektorfunktion. Das hohe zytotoxische Potenzial des Fas/FasL-Systems setzt eine stringente Regulation der FasL-Expression bei gleichzeitig rascher Mobilisierbarkeit voraus. Im Rahmen der vorliegenden Arbeit wurde gezeigt, dass die Aktivierungs-abhängige Oberflächenexpression des FasL einer biphasischen Kinetik folgt. Die erste Expressionsphase beruht auf der Aktin-abhängigen Degranulation sekretorischer Lysosomen, während die zweite Phase eine Protein-Neusynthese voraussetzt. Zur Beschreibung der zugrunde liegenden molekularen Maschinerie wurde die Funktion von Proteinen analysiert, die über SH3-Domänen mit der intrazellulären Prolin-reichen Domäne des FasL interagieren. Proteine der PCH-Familie sind dabei an der lysosomalen Assoziation des FasL beteiligt, während das Adapter-Protein Nck für die Rekrutierung des FasL zur immunologischen Synapse essentiell ist. Auf der Zelloberfläche kann die Oberflächenexpression des FasL durch die Metalloprotease ADAM10 moduliert werden
Identification of SH3 domain interaction partners of human FasL (CD178) by phage display screening
<p>Abstract</p> <p>Background -</p> <p>Fas ligand is a cytotoxic effector molecule of T and NK cells which is characterized by an intracellular N-terminal polyproline region that serves as a docking site for SH3 and WW domain proteins. Several previously described Fas ligand-interacting SH3 domain proteins turned out to be crucial for the regulation of storage, expression and function of the death factor. Recent observations, however, indicate that Fas ligand is also subject to posttranslational modifications including shedding and intramembrane proteolysis. This results in the generation of short intracellular fragments that might either be degraded or translocate to the nucleus to influence transcription. So far, protein-protein interactions that specifically regulate the fate of the intracellular fragments have not been identified.</p> <p>Results -</p> <p>In order to further define the SH3 domain interactome of the intracellular region of Fas ligand, we now screened a human SH3 domain phage display library. In addition to known SH3 domains mediating binding to the Fas ligand proline-rich domain, we were able to identify a number of additional SH3 domains that might also associate with FasL. Potential functional implications of the new binding proteins for the death factor's biology are discussed. For Tec kinases and sorting nexins, the observed interactions were verified in cellular systems by pulldown experiments.</p> <p>Conclusion -</p> <p>We provide an extended list of putative Fas ligand interaction partners, confirming previously identified interactions, but also introducing several novel SH3 domain proteins that might be important regulators of Fas ligand function.</p
Posttranslational regulation of Fas ligand function
The TNF superfamily member Fas ligand acts as a prototypic death factor. Due to its ability to induce apoptosis in Fas (APO-1, CD95) expressing cells, Fas ligand participates in essential effector functions of the immune system. It is involved in natural killer cell- and T cell-mediated cytotoxicity, the establishment of immune privilege, and in termination of immune responses by induction of activation-induced cell death. In addition, Fas ligand-positive tumours may evade immune surveillance by killing Fas-positive tumour-infiltrating cells. Given these strong cytotoxic capabilities of Fas ligand, it is obvious that its function has to be strictly regulated to avoid uncontrolled damage. In hematopoietic cells, the death factor is stored in secretory lysosomes and is mobilised to the immunological synapse only upon activation. The selective sorting to and the release from this specific lysosomal compartment requires interactions of the Fas ligand cytosolic moiety, which mediates binding to various adapter proteins involved in trafficking and cytoskeletal reorganisation. In addition, Fas ligand surface expression is further regulated by posttranslational ectodomain shedding and subsequent regulated intramembrane proteolysis, releasing a soluble ectodomain cytokine into the extracellular space and an N-terminal fragment with a potential role in intracellular signalling processes. Moreover, other posttranslational modifications of the cytosolic domain, including phosphorylation and ubiquitylation, have been described to affect various aspects of Fas ligand biology. Since FasL is regarded as a potential target for immunotherapy, the further characterisation of its biological regulation and function will be of great importance for the development and evaluation of future therapeutic strategies
Analysis of Cytotoxic Granules and Constitutively Produced Extracellular Vesicles from Large Granular Lymphocytic Leukemia Cell Lines
Background Large granular lymphocyte leukemias (LGLLs) are rare lymphoproliferative malignancies caused by clonal expansion of granular lymphocytes. T-cell LGLL and natural killer (NK) cell LGLL are defined based on their cellular origin. Their clinical manifestation and pathophysiology vary depending on the subtype and include, e.g., neutropenia, anemia, recurrent infections, and autoimmunity. A limited number of available patient-derived cell lines are considered valuable tools to study the biology of these malignancies. They differ in the expression of lineage-specific surface markers, but generally contain cytotoxic effector molecules in characteristic granules. Methods We investigated the presence and release of lysosome-associated effector proteins in patient-derived LGLL cell lines by flow and imaging cytometry, by Western blotting and by bottom-up proteomics profiling. Results The tested cell lines did not express FasL (CD178), but did express CD26/DPP4+. Intracellularly, we detected major differences in the abundance and subcellular distribution of granzymes, perforin, and granulysin. Similar differences were seen in enriched lysosome-related effector vesicles (LREVs). The proteomics profiling of enriched EVs from an NK-LGLL line (NKL) and a T-LGLL line (MOTN-1), confirmed individual profiles of effector molecules. Conclusion Our analyses underscore the individual distribution of effector proteins but also open new routes to define the role of intra- and extracellular granules in the disease manifestation or pathology of LGLLs
Galectin-3 Released by Pancreatic Ductal Adenocarcinoma Suppresses γδ T Cell Proliferation but Not Their Cytotoxicity
Pancreatic ductal adenocarcinoma (PDAC) is characterized by an immunosuppressive tumor microenvironment with a dense desmoplastic stroma. The expression of β-galactoside-binding protein galectin-3 is regarded as an intrinsic tumor escape mechanism for inhibition of tumor-infiltrating T cell function. In this study, we demonstrated that galectin-3 is expressed by PDAC and by γδ or αβ T cells but is only released in small amounts by either cell population. Interestingly, large amounts of galectin-3 were released during the co-culture of allogeneic in vitro expanded or allogeneic or autologous resting T cells with PDAC cells. By focusing on the co-culture of tumor cells and γδ T cells, we observed that knockdown of galectin-3 in tumor cells identified these cells as the source of secreted galectin-3. Galectin-3 released by tumor cells or addition of physiological concentrations of recombinant galectin-3 did neither further inhibit the impaired γδ T cell cytotoxicity against PDAC cells nor did it induce cell death of in vitro expanded γδ T cells. Initial proliferation of resting peripheral blood and tumor-infiltrating Vδ2-expressing γδ T cells was impaired by galectin-3 in a cell-cell-contact dependent manner. The interaction of galectin-3 with α3β1 integrin expressed by Vδ2 γδ T cells was involved in the inhibition of γδ T cell proliferation. The addition of bispecific antibodies targeting γδ T cells to PDAC cells enhanced their cytotoxic activity independent of the galectin-3 release. These results are of high relevance in the context of an in vivo application of bispecific antibodies which can enhance cytotoxic activity of γδ T cells against tumor cells but probably not their proliferation when galectin-3 is present. In contrast, adoptive transfer of in vitro expanded γδ T cells together with bispecific antibodies will enhance γδ T cell cytotoxicity and overcomes the immunosuppressive function of galectin-3
Stromal cells support the survival of human primary chronic lymphocytic leukemia (CLL) cells through Lyn-driven extracellular vesicles
Introduction In chronic lymphocytic leukemia (CLL), the tumor cells receive survival support from stromal cells through direct cell contact, soluble factors and extracellular vesicles (EVs). The protein tyrosine kinase Lyn is aberrantly expressed in the malignant and stromal cells in CLL tissue. We studied the role of Lyn in the EV-based communication and tumor support. Methods We compared the Lyn-dependent EV release, uptake and functionality using Lyn-proficient (wild-type) and -deficient stromal cells and primary CLL cells. Results Lyn-proficient cells caused a significantly higher EV release and EV uptake as compared to Lyn-deficient cells and also conferred stronger support of primary CLL cells. Proteomic comparison of the EVs from Lyn-proficient and -deficient stromal cells revealed 70 significantly differentially expressed proteins. Gene ontology studies categorized many of which to organization of the extracellular matrix, such as collagen, fibronectin, fibrillin, Lysyl oxidase like 2, integrins and endosialin (CD248). In terms of function, a knockdown of CD248 in Lyn+ HS-5 cells resulted in a diminished B-CLL cell feeding capacity compared to wildtype or scrambled control cells. CD248 is a marker of certain tumors and cancer-associated fibroblast (CAF) and crosslinks fibronectin and collagen in a membrane-associated context. Conclusion Our data provide preclinical evidence that the tyrosine kinase Lyn crucially influences the EV-based communication between stromal and primary B-CLL cells by raising EV release and altering the concentration of functional molecules of the extracellular matrix
Chitosan nanoparticles as antigen vehicles to induce effective tumor specific T cell responses
Cancer vaccinations sensitize the immune system to recognize tumor-specific antigens de novo or boosting preexisting immune responses. Dendritic cells (DCs) are regarded as the most potent antigen presenting cells (APCs) for induction of (cancer) antigen-specific CD8+ T cell responses. Chitosan nanoparticles (CNPs) used as delivery vehicle have been shown to improve anti-tumor responses. This study aimed at exploring the potential of CNPs as antigen delivery system by assessing activation and expansion of antigen-specific CD8+ T cells by DCs and subsequent T cell-mediated lysis of pancreatic ductal adenocarcinoma (PDAC) cells. As model antigen the ovalbumin-derived peptide SIINFEKL was chosen. Using imaging cytometry, intracellular uptake of FITC-labelled CNPs of three different sizes and qualities (90/10, 90/20 and 90/50) was demonstrated in DCs and in pro- and anti-inflammatory macrophages to different extents. While larger particles (90/50) impaired survival of all APCs, small CNPs (90/10) were not toxic for DCs. Internalization of SIINFEKL-loaded but not empty 90/10-CNPs promoted a pro-inflammatory phenotype of DCs indicated by elevated expression of pro-inflammatory cytokines. Treatment of murine DC2.4 cells with SIINFEKL-loaded 90/10-CNPs led to a marked MHC-related presentation of SIINFEKL and enabled DC2.4 cells to potently activate SIINFEKL-specific CD8+ OT-1 T cells finally leading to effective lysis of the PDAC cell line Panc-OVA. Overall, our study supports the suitability of CNPs as antigen vehicle to induce potent anti-tumor immune responses by activation and expansion of tumor antigen-specific CD8+ T cells
Histone Deacetylase Inhibitor Modulates NKG2D Receptor Expression and Memory Phenotype of Human Gamma/Delta T Cells Upon Interaction With Tumor Cells
The functional plasticity and anti-tumor potential of human γδ T cells have been widely studied. However, the epigenetic regulation of γδ T-cell/tumor cell interactions has been poorly investigated. In the present study, we show that treatment with the histone deacetylase inhibitor Valproic acid (VPA) significantly enhanced the expression and/or release of the NKG2D ligands MICA, MICB and ULBP-2, but not ULBP-1 in the pancreatic carcinoma cell line Panc89 and the prostate carcinoma cell line PC-3. Under in vitro tumor co-culture conditions, the expression of full length and the truncated form of the NKG2D receptor in γδ T cells was significantly downregulated. Furthermore, using a newly established flow cytometry-based method to analyze histone acetylation (H3K9ac) in γδ T cells, we showed constitutive H3K9aclow and inducible H3K9achigh expression in Vδ2 T cells. The detailed analysis of H3K9aclow Vδ2 T cells revealed a significant reversion of TEMRA to TEM phenotype during in vitro co-culture with pancreatic ductal adenocarcinoma cells. Our study uncovers novel mechanisms of how epigenetic modifiers modulate γδ T-cell differentiation during interaction with tumor cells. This information is important when considering combination therapy of VPA with the γδ T-cell-based immunotherapy for the treatment of certain types of cancer
Nck adapter proteins: functional versatility in T cells
Nck is a ubiquitously expressed adapter protein that is almost exclusively built of one SH2 domain and three SH3 domains. The two isoproteins of Nck are functionally redundant in many aspects and differ in only few amino acids that are mostly located in the linker regions between the interaction modules. Nck proteins connect receptor and non-receptor tyrosine kinases to the machinery of actin reorganisation. Thereby, Nck regulates activation-dependent processes during cell polarisation and migration and plays a crucial role in the signal transduction of a variety of receptors including for instance PDGF-, HGF-, VEGF- and Ephrin receptors. In most cases, the SH2 domain mediates binding to the phosphorylated receptor or associated phosphoproteins, while SH3 domain interactions lead to the formation of larger protein complexes. In T lymphocytes, Nck plays a pivotal role in the T cell receptor (TCR)-induced reorganisation of the actin cytoskeleton and the formation of the immunological synapse. However, in this context, two different mechanisms and adapter complexes are discussed. In the first scenario, dependent on an activation-induced conformational change in the CD3ε subunits, a direct binding of Nck to components of the TCR/CD3 complex was shown. In the second scenario, Nck is recruited to the TCR complex via phosphorylated Slp76, another central constituent of the membrane proximal activation complex. Over the past years, a large number of putative Nck interactors have been identified in different cellular systems that point to diverse additional functions of the adapter protein, e.g. in the control of gene expression and proliferation
The concept of transport capacity in geomorphology
The notion of sediment-transport capacity has been engrained in geomorphological and related literature for over 50 years, although its earliest roots date back explicitly to Gilbert in fluvial geomorphology in the 1870s and implicitly to eighteenth to nineteenth century developments in engineering. Despite cross fertilization between different process domains, there seem to have been independent inventions of the idea in aeolian geomorphology by Bagnold in the 1930s and in hillslope studies by Ellison in the 1940s. Here we review the invention and development of the idea of transport capacity in the fluvial, aeolian, coastal, hillslope, débris flow, and glacial process domains. As these various developments have occurred, different definitions have been used, which makes it both a difficult concept to test, and one that may lead to poor communications between those working in different domains of geomorphology. We argue that the original relation between the power of a flow and its ability to transport sediment can be challenged for three reasons. First, as sediment becomes entrained in a flow, the nature of the flow changes and so it is unreasonable to link the capacity of the water or wind only to the ability of the fluid to move sediment. Secondly, environmental sediment transport is complicated, and the range of processes involved in most movements means that simple relationships are unlikely to hold, not least because the movement of sediment often changes the substrate, which in turn affects the flow conditions. Thirdly, the inherently stochastic nature of sediment transport means that any capacity relationships do not scale either in time or in space. Consequently, new theories of sediment transport are needed to improve understanding and prediction and to guide measurement and management of all geomorphic systems