235 research outputs found

    Liprin- 1, ERC1 and LL5 define polarized and dynamic structures that are implicated in cell migration

    Get PDF
    Cell migration during development and metastatic invasion requires the coordination of actin and adhesion dynamics to promote protrusive activity at the front of the cell. The knowledge of the molecular mechanisms required to achieve such coordination is fragmentary. Here, we identify a new functional complex that drives cell motility. ERC1a (an isoform of ERC1) and the LL5 proteins LL5α and LL5β (encoded by PHLDB1 and PHLDB2, respectively) are required, together with liprin-α1, for effective migration and tumor cell invasion, and do so by stabilizing the protrusive activity at the cell front. Depletion of either protein negatively affects invasion, migration on extracellular matrix, lamellipodial persistence and the internalization of active integrin β1 receptors needed for adhesion turnover at the front of the cell. Liprin-α1, ERC1a and LL5 also define new highly polarized and dynamic cytoplasmic structures uniquely localized near the protruding cell edge. Our results indicate that the functional complex and the associated structures described here represent an important mechanism to drive tumor cell migration

    Next-generation insights into regulatory T cells: expression profiling and FoxP3 occupancy in Human

    Get PDF
    Regulatory T-cells (Treg) play an essential role in the negative regulation of immune answers by developing an attenuated cytokine response that allows suppressing proliferation and effector function of T-cells (CD4+ Th). The transcription factor FoxP3 is responsible for the regulation of many genes involved in the Treg gene signature. Its ablation leads to severe immune deficiencies in human and mice. Recent developments in sequencing technologies have revolutionized the possibilities to gain insights into transcription factor binding by ChiP-seq and into transcriptome analysis by mRNA-seq. We combine FoxP3 ChiP-seq and mRNA-seq in order to understand the transcriptional differences between primary human CD4+ T helper and regulatory T-cells, as well as to study the role of FoxP3 in generating those differences. We show, that mRNA-seq allows analyzing the transcriptomal landscape of T-cells including the expression of specific splice variants at much greater depth than previous approaches, whereas 50% of transcriptional regulation events have not been described before by using diverse array technologies. We discovered splicing patterns like the expression of a kinase-dead isoform of IRAK1 upon T-cell activation. The immunoproteasome is up-regulated in both Treg and CD4+ Th cells upon activation, whereas the ‘standard’ proteasome is up-regulated in Tregs only upon activation

    Next-generation insights into regulatory T cells: expression profiling and FoxP3 occupancy in Human

    Get PDF
    Regulatory T-cells (Treg) play an essential role in the negative regulation of immune answers by developing an attenuated cytokine response that allows suppressing proliferation and effector function of T-cells (CD4+ Th). The transcription factor FoxP3 is responsible for the regulation of many genes involved in the Treg gene signature. Its ablation leads to severe immune deficiencies in human and mice. Recent developments in sequencing technologies have revolutionized the possibilities to gain insights into transcription factor binding by ChiP-seq and into transcriptome analysis by mRNA-seq. We combine FoxP3 ChiP-seq and mRNA-seq in order to understand the transcriptional differences between primary human CD4+ T helper and regulatory T-cells, as well as to study the role of FoxP3 in generating those differences. We show, that mRNA-seq allows analyzing the transcriptomal landscape of T-cells including the expression of specific splice variants at much greater depth than previous approaches, whereas 50% of transcriptional regulation events have not been described before by using diverse array technologies. We discovered splicing patterns like the expression of a kinase-dead isoform of IRAK1 upon T-cell activation. The immunoproteasome is up-regulated in both Treg and CD4+ Th cells upon activation, whereas the ‘standard’ proteasome is up-regulated in Tregs only upon activation

    Structural characterisation of neutrophil glycans by ultra sensitive mass spectrometric glycomics methodology

    Get PDF
    Neutrophils are the most abundant white blood cells in humans and play a vital role in several aspects of the immune response. Numerous reports have implicated neutrophil glycosylation as an important factor in mediating these interactions. We report here the application of high sensitivity glycomics methodologies, including matrix assisted laser desorption ionisation (MALDI-TOF) and MALDI-TOF/TOF analyses, to the structural analysis of N- and O-linked carbohydrates released from two samples of neutrophils, prepared by two separate and geographically remote laboratories. The data produced demonstrates that the cells display a diverse range of sialylated and fucosylated complex glycans, with a high level of similarity between the two preparations

    Differential Requirements for Clathrin-dependent Endocytosis at Sites of Cell–Substrate Adhesion

    Get PDF
    Little is known about the influences of cell–substrate attachment in clathrin-mediated endocytosis. We find that cell–substrate adhesion reduces the rate of endocytosis. In addition, we demonstrate that actin assembly is differentially required for efficient endocytosis, with a stronger requirement for actin dynamics at sites of adhesion

    Integrin β1 is required for the invasive behaviour but not proliferation of squamous cell carcinoma cells in vivo

    Get PDF
    Integrin β1 is both overexpressed and in an ‘active' conformation in vulval squamous cell carcinomas (VSCCs) compared to matched normal skin. To investigate the significance of integrin β1 deregulation we stably knocked-down integrin β1 expression in the VSCC cell line A431. In vitro analysis revealed that integrin β1 is required for cell adhesion, cell spreading and invasion. However, integrin β1 is not required for cell growth or activation of FAK and ERK signalling in vitro or in vivo. Strikingly, while control tumours were able to invade the dermis, integrin β1 knockdown tumours were significantly more encapsulated and less invasive
    corecore