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Abbreviations 

LCM  laser-capture microdissection 

FFPE  formalin-fixed paraffin-embedded 

SP3  single-pot solid-particle-enhanced sample preparation 

TMT   tandem mass tag 

GO   gene ontology 

IHC   immunohistochemistry 

H&E   haematoxylin & eosin 

SDC   sodium deoxycholate 

ABC   ammonium bicarbonate 

ACN   acetonitrile 

AGC  automatic gain control 

HCD  higher-energy collisional dissociation 

TCA  tricarboxylic acid 
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Abstract 

Laser-capture microdissection (LCM) allows the visualization and isolation of morphologically 

distinct subpopulations of cells from heterogeneous tissue specimens. In combination with 

formalin-fixed and paraffin-embedded (FFPE) tissue it provides a powerful tool for retrospective 

and clinically relevant studies of tissue proteins in a healthy and diseased context. We first 

optimized the protocol for efficient LCM analysis of FFPE tissue specimens. The use of SDS 

containing extraction buffer in combination with the single-pot solid-phase-enhanced sample 

preparation (SP3) digest method gave the best results regarding protein yield and protein/peptide 

identifications. Microdissected FFPE human substantia nigra tissue samples (~3,000 cells) were 

then analysed, using tandem mass tag (TMT) labelling and LC-MS/MS, resulting in the 

quantification of >5,600 protein groups. Nigral proteins were classified and analysed by 

abundance, showing an enrichment of extracellular exosome and neuron-specific gene ontology 

(GO) terms among the higher abundance proteins. Comparison of microdissected samples with 

intact tissue sections, using a label-free shotgun approach, revealed an enrichment of neuronal cell 

type markers, such as tyrosine hydroxylase and alpha-synuclein, as well as proteins annotated with 

neuron-specific GO terms. Overall, this study provides a detailed protocol for laser-capture 

proteomics using FFPE tissue and demonstrates the efficiency of LCM analysis of distinct cell 

subpopulations for proteomic analysis using low sample amounts. 
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Introduction 

 

Formalin-fixed and paraffin-embedded (FFPE) tissue is a gold mine for retrospective clinical 

studies considering the huge tissue repositories available worldwide. The samples are not 

contagious, can be stored for years at room temperature and preserve the structure and morphology 

of the tissue (1). FFPE is routinely used in pathology departments worldwide to archive tissue 

specimens. The fixation with formalin preserves the tissue via cross-linking of formaldehyde with 

nucleic acids, polysaccharides and protein side chains (2). However, these cross-links and 

modifications with formaldehyde result in poor extraction of proteins and RNA/DNA. Therefore, 

for subsequent biochemical analysis, the cross-links need to be reversed, which can be achieved 

via heating (“antigen retrieval”) (2). Variation in the protocols used by different laboratories, 

regarding fixation times, formalin concentrations, temperature and pH, influence the quality of 

tissue specimens and influence the efficiency of protein extraction from FFPE tissue (3). 

Besides heating of samples, different extraction buffers have been used to achieve efficient protein 

extraction. These buffers commonly contain Tris and SDS, but also other detergents, such as 

Rapigest, chaotropes (e.g. guanidine-HCl) and organic solvents (e.g. trifluoroethanol, acetonitrile) 

have been used to solubilize proteins from FFPE tissue (1,2,4).  

Tissue sections are a heterogeneous mix of diverse cell populations present in different cell 

numbers. Laser-capture microdissection (LCM) is a powerful technique for visualizing and 

isolating distinct cell subpopulations from heterogeneous tissue in its morphological context. LCM 

enables enrichment of cells and analysis of protein expression in specific cell subpopulations. For 

example, using LCM, neuromelanin granules were recently isolated from substantia nigra tissue 

(5), while Drummond et al. purified neurons and amyloid plaques from Alzheimer’s disease brain 
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tissue (6,7). However, a challenge for combining LCM with proteomics is the small quantity of 

isolated cells and correspondingly low levels of proteins, which usually prohibits fractionation of 

samples and their in-depth analysis. However, multiplexing of samples, via the use of isobaric 

TMT, can increase total peptide levels and facilitate fractionation (8,9).  

The substantia nigra is an area in the midbrain containing brown-pigmented granules 

(“neuromelanin”), which are part of dopaminergic neurons. The loss of these neurons in substantia 

nigra pars compacta is a hallmark of Parkinson’s disease (10). Therefore, several studies have 

already analysed the nigral proteome and compared samples from healthy donors with diseased 

ones (11-13). Additionally, studies isolating neuromelanin from substantia nigra tissue have been 

performed recently (5,14). Overall up to 1,795 proteins per study were identified. However, these 

previous studies did not involve sample fractionation to improve the depth of analysis. 

Additionally, they were performed using frozen tissues, whereas FFPE tissue material offers better 

tissue morphology allowing a more precise identification and finally isolation of target cells.  

In this study, we have developed an optimized protocol to facilitate efficient LCM analysis of 

FFPE tissue specimens. A thorough investigation of each sample preparation step is provided 

including the optimization of protein extraction from FFPE tissue by testing different extraction 

buffers and investigating the influence of immunohistochemical (IHC) and haematoxylin & eosin 

(H&E) staining on proteins. SDS present in the protein extracts was removed with the SP3 digest 

method, which was modified to improve protein and peptide recoveries. Thus, acidification of the 

peptide wash solution could significantly increase the peptide recovery. Protein expression of 

microdissected samples was compared to intact tissue sections from substantia nigra to evaluate 

the efficiency of LCM for the purification of small cell populations, which resulted in the 

enrichment of neuron-specific proteins including tyrosine hydroxylase and alpha-synuclein. The 

 at U
N

IV
E

R
SIT

Y
 O

F D
U

N
D

E
E

 on M
arch 5, 2020

https://w
w

w
.m

cponline.org
D

ow
nloaded from

 

https://www.mcponline.org


6 
 

optimized protocol was used to analyse samples containing as few as ~3,000 cells isolated from 

the substantia nigra, using FFPE tissue. Replicate samples of 15 healthy donors were analysed in 

five separate TMT10plex batches giving an overview of the abundance and annotated GO terms 

of nigral proteins. This study provides a detailed workflow for laser-capture proteomics of samples 

from FFPE tissue using limited sample amounts and represents the most in-depth proteomic dataset 

for human substantia nigra samples reported to date. 
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Experimental Procedures  

Tissue samples and laser-capture microdissection 

All FFPE human brain samples were purchased from the Netherlands Brain Bank (Amsterdam/The 

Netherlands) under the regulatory conditions of the Boehringer Ingelheim corporate policy 

regarding the acquisition and use of human biospecimen. Brains were sectioned at 10 μm thickness 

using a microtome, collected on polyethylene naphthalate membrane glass slides (Carl Zeiss 

Microscopy GmbH, Jena, Germany) and air dried over night at room temperature. Prior to LCM, 

sections on glass slides were deparaffinized using two washes of xylene (3 min each) followed by 

ethanol (100%, 96%, 70%) for 1 minute each. Laser microdissection and pressure catapulting of 

~3,000 substantia nigra cells was performed using a 10 × objective under brightfield optics on a 

PALM MicroBeam system (Carl Zeiss Microscopy GmbH). The area equivalent to ~3,000 cells 

was estimated by counting and averaging the cell number of three squares from tissue sections 

stained with haematoxylin. An amount of ~3,000 cells reflected an area of 1.2 - 3x106 μm2 sample 

depending.  Isolated cells were collected in an adhesive cap (Carl Zeiss Microscopy GmbH) and 

resuspended in extraction buffer followed by the preparation steps described below.  

 

Protein extraction 

Unstained FFPE human substantia nigra sections, which were analysed without LCM (e.g. for 

comparison of buffers), were sectioned using a microtome (4 μm thick), transferred into 1.5 mL 

tubes and deparaffinized by incubation with 500 μL heptane for 1 h. After the addition of 100 μL 

methanol samples were vortexed thoroughly and centrifuged for 2 min (15,000 g). The supernatant 

was removed and tissue samples were air-dried followed by resuspension in 100 μL SDS (2% SDS 

in 300 mM Tris-HCl pH 8.0), sodium deoxycholate (SDC; 1% SDC in 300 mM Tris-HCl pH 8.5) 
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or Rapigest (0.2% Rapigest in 50 mM ammonium bicarbonate (ABC)) extraction buffer. Samples 

were boiled (25 min, 99 °C, 350 rpm) and sonicated for 20 cycles (Bioruptor® Pico bath sonicator, 

Diagenode, Belgium; 30 s on, 30 s off) followed by heating for 2 h at 80 °C (500 rpm) and another 

sonication step (20 cycles). After centrifugation (10 min, 21,300 g) the supernatant was transferred 

into a new tube. Optionally, the extraction steps were repeated with the remaining tissue. 

Reversibly oxidized cysteines were reduced with 10 mM DTT (45 min, 50 °C, 1,000 rpm) followed 

by alkylation of free thiols with 20 mM iodoacetamide (45 min, 22 °C, 1,000 rpm, in the dark). 

Proteins were quantified using the fluorometric EZQTM assay (Thermo Fisher Scientific, Bremen, 

Germany).  

Laser-capture microdissected tissue samples were resuspended in 100 μL SDS extraction buffer 

followed by the preparation steps described above. The extraction steps were performed twice and 

both protein extracts were combined. 

 

Protein digestion using the SP3 method 

Protein extracts in SDS buffer were cleaned and digested with the SP3 method as described 

previously with modifications (15,16). Briefly, 10 μL of a 20 μg/μL SP3 bead stock (Sera-Mag 

SpeedBead carboxylate-modified magnetic particles; GE Healthcare Life Sciences, Freiburg, 

Germany) for LCM samples (or a 1:10 protein:bead ratio for sections) and 500 μL acetonitrile 

(ACN; final concentration of 70%) were added to 200 μL of protein extract and incubated for 10 

min (1000 rpm). Tubes were mounted on a magnetic rack, supernatants were removed and beads 

were washed twice with 70% ethanol and once with ACN (1 mL each). Beads were resuspended 

in 80 μL 50 mM ABC and digested overnight with trypsin (1:50 trypsin:protein ratio for sections, 

0.5 μg for LCM samples; PierceTM trypsin protease, #90058, Thermo Scientific; 37 °C, 1,000 rpm). 
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The next day another portion of trypsin (1:50 trypsin:protein ratio for sections, 0.5 μg for LCM 

samples) was added and further digested for 4 h. Peptides were cleaned by addition of 9 μL 10% 

formic acid (final concentration of 1%) and 1750 μL ACN (final concentration of 95%) followed 

by incubation for 10 min. After spinning down (1,000 g) tubes were mounted on a magnetic rack 

and beads were washed once with 1.5 mL ACN. Peptides were eluted from the beads with 50 μL 

2% DMSO and acidified with 2.6 μL 20 % formic acid (final concentration of 1%) followed by 

centrifugation (15,000 g). Peptide amounts were quantified using the fluorometric CBQCA assay 

(Thermo Scientific).  

 

In-solution digestion 

Prior to digestion protein extracts in Rapigest buffer were diluted 1:2 with 50 mM ABC. Rapigest 

and SDC extracts were digested overnight (1:50 trypsin:protein ratio; PierceTM trypsin protease, 

#90058, Thermo Scientific; 37 ºC). The next day another portion of trypsin was added (4 h; 1:50 

trypsin:protein ratio). followed by acidification to a final concentration of 1% formic acid. After 

centrifugation (10 min, 21,300 g) samples were desalted by solid-phase extraction using Sep-Pak 

tC18 cartridges (50 mg; Waters, Eschborn, Germany) according to the manufacturer’s instructions. 

Briefly, cartridges were activated with ACN and equilibrated with 0.1% TFA in water (1 mL each). 

Samples were loaded, washed five times with 1 mL 0.1% TFA in water and peptides were eluted 

with 70% ACN/0.1% TFA (1 mL) and dried in vacuo in a Concentrator plus (Eppendorf, 

Hamburg). 
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TMT labelling 

The required volume for 1.5 μg peptides per sample were dried in vacuo in a Concentrator plus 

(Eppendorf, Hamburg) and resuspended in 50 μL 100 mM HEPES pH 8.5. TMT10plex tags 

(Thermo Scientific) were dissolved in anhydrous ACN and added to the peptide sample in a 1:10 

peptide:TMT ratio. Additional anhydrous ACN was added to a final volume of 22 μL. Samples 

were incubated for 2 h (22 °C, 750 rpm). Labelling efficiency was evaluated by desalting aliquots 

from 20% of the samples with C18 stage tips followed by LC-MS analysis and database search 

using TMT as variable modification (see supplemental data for details). In case of insufficient 

labelling more TMT was added. Unreacted TMT was quenched by incubation with 5 μL 5% 

hydroxylamine for 30 min. Samples belonging to the same batch were combined and dried in 

vacuo. 

 

High pH reversed phase fractionation 

TMT labelled samples were fractionated using off-line high pH reversed phase chromatography. 

Dried samples were resuspended in 5% formic acid and loaded onto a 4.6 x 250 mm XBridge 

BEH130 C18 column (3.5 μm, 130 Å; Waters). Samples were separated on a Dionex Ultimate 

3000 HPLC system with a flow rate of 1 mL/min. Solvents used were water (A), ACN (B) and 

100 mM ammonium formate pH 9 (C). While solvent C was kept constant at 10%, solvent B 

started at 5% for 3 min, increased to 21.5% in 2 min, 48.8% in 11 min and 90% in 1 min, was kept 

at 90% for further 5 min followed by returning to starting conditions and re-equilibration for 8 

min. Peptides were separated into 48 fractions, which were concatenated into 24 fractions and 

subsequently dried in vacuo. Peptides were redissolved in 5% formic acid and analysed by LC-

MS. 
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LC-MS analysis 

Label-free peptides were analysed on a Q-Exactive Plus mass spectrometer coupled to a Dionex 

RSLCnano HPLC (Thermo Scientific). Samples were loaded onto a 100 μm × 2 cm Acclaim 

PepMap-C18 trap column (5 μm, 100 Å) for 6 min with 2% ACN/0.1% formic acid and a constant 

flow of 4 μL/min. Peptides were separated on a 75 μm × 50 cm EASY-Spray C18 column (2 μm, 

100 Å; Thermo Scientific) at 40 ºC over a linear gradient from 10% to 35% B in 110 min with a 

flow rate of 200 nL/min. Solvents used were 0.1% formic acid (A) and 80% ACN/0.1% formic 

acid (B). The spray was initiated by applying 2.5 kV to the EASY-Spray emitter. The ion transfer 

capillary temperature was set to 250 °C and the radio frequency of the S-lens to 50%. Data were 

acquired under the control of Xcalibur software in a data-dependent mode using the top 15 most 

abundant precursor ions. Full scan MS spectra were acquired in profile mode with a resolution of 

70,000 covering a mass range of m/z 350-1,400. The automatic gain control (AGC) target was set 

to 1x106 ions with a maximum fill time of 20 ms. Precursor ions were isolated in the quadrupole 

with a window of m/z 1.5 and fragmented in the higher energy collisional dissociation (HCD) cell 

with a normalized collision energy of 27. Spectra of fragment ions were acquired with a resolution 

of 17,500, AGC target of 1x105 ions and a maximum fill time of 60 ms. Only peptides with a 

charge between 2 and 6 were considered for fragmentation. Dynamic exclusion of already 

fragmented precursor ions was 40 ms and peptide match was set to “preferred”. 

TMT labelled samples were analysed on an Orbitrap Fusion Tribrid mass spectrometer coupled to 

a Dionex RSLCnano HPLC (Thermo Scientific). LC and spray parameters used were the same as 

described above. Peptides were separated over a linear gradient from 10% to 40% B in 210 min 

with a flow rate of 200 nL/min. The full scan was acquired in the orbitrap covering the mass range 
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of m/z 350 to 1,400 with a mass resolution of 120,000, an AGC target of 2x105 ions and a maximum 

injection time of 50 ms. Only precursor ions with charges between 2 and 7 were selected, with an 

isolation window of m/z 1.6 for fragmentation using collision-induced dissociation in the ion trap 

with 35% collision energy. The ion trap scan rate was set to “rapid”. The AGC target was set to 

4x103 ions with a maximum injection time of 180 ms and a dynamic exclusion of 80 s. During the 

MS3 analysis, for more accurate TMT quantification, 5 fragment ions were co-isolated using 

synchronous precursor selection in a window of m/z 2 and further fragmented with a HCD collision 

energy of 55%. The fragments were then analysed in the orbitrap with a resolution of 50,000. The 

AGC target was set to 5x104 ions and the maximum injection time was 115 ms. The cycle duration 

was 2 s.  

TMT batch 4 was measured with the following changes of parameters. Peptides were separated 

over a linear gradient from 10% to 40% B in 150 min with a flow rate of 200 nL/min. The full 

scan was acquired with an AGC target of 2x105 ions. Precursor ions were isolated with an isolation 

window of m/z 1.2. The ion trap scan rate was set to “turbo”. The AGC target was set to 1x104 

ions with a maximum injection time of 50 ms and a dynamic exclusion of 60 s. During the MS3 

analysis the maximum injection time was set to 86 ms. The cycle duration was 3 s.  

 

Data analysis 

Acquired tandem mass spectra were searched against the Uniprot human database (downloaded 

on 14th of June 2018, 20,349 proteins) using MaxQuant (version 1.6.2.3). Trypsin/P was specified 

as a cleavage enzyme, allowing up to two missed cleavages and a mass tolerance of 4.5 ppm for 

precursor ions and 0.5 Da (Ion trap, used for SPS-MS3 scans) or 20 ppm (Orbitrap) for MS2 

fragment ions. Carbamidomethylation of cysteine was used as a fixed modification, with oxidation 
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of methionine, deamidation of asparagine and glutamine and acetylation of the protein N-terminus 

used as variable modifications. For a separate search formylation on lysine and methylation on 

lysine and arginine were included as variable modifications. For TMT data the type of search was 

set to reporter ion MS3 using TMT10plex. The fractions of all five TMT batches were searched 

together. For label-free quantification the “match between runs” option in MaxQuant was only 

applied to the search for the comparison of microdissected samples with intact tissue sections. All 

other searches of label-free data, regarding the optimization of protein extraction, were performed 

without this option. A false discovery rate of 1% was applied to peptide and protein identifications. 

Contaminants and reverse hits were excluded from the results prior to further analysis. All protein 

intensities were median-normalized to address differences in sample loadings. For TMT data an 

additional normalization step was applied to address the variation between batches. The sum of 

median-normalized and isotope-corrected reporter intensities of all ten TMT channels was 

calculated per batch and protein. The average of sums higher than zero from five batches was 

calculated. A normalization factor for each batch and protein group was calculated by division of 

the sum through the average value. Only protein groups with minimum two peptides per protein 

and minimum five reporter intensity values in 50 samples were considered for further analysis. 

Also, as shown by correlation analysis (Figure S9), replicate 7.1 was excluded as an outlier.  

Hierarchical clusters, heat maps, correlation matrices, box plots and volcano plots were created 

using Instant Clue (version 0.5.3) (17) and Venn diagrams were created in DataShop (version 1.2; 

https://peptracker.com/ds/). The histogram was generated with Perseus (version 1.6.2.3) (18), 

while other plots were prepared with Excel. Functional enrichment and pathway analysis was 

performed with the DAVID tool (19,20).  
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Experimental Design and Statistical Rationale 

To test the three different extraction buffers, four technical replicates were analysed per buffer 

using the same donor from substantia nigra. For the comparison of microdissected substantia nigra 

with intact tissue sections 11 replicate samples from intact sections and 13 replicates from 

microdissected samples were analysed, which were prepared from five different donors. An 

unpaired, two-tailed Student's t-test (equal variance) was performed to identify proteins with 

significant higher or lower intensities (p≤ 0.01 and p≤ 0.05). In total, 46 replicate samples of 15 

healthy donors from microdissected substantia nigra were analysed in five separate TMT batches. 

Additionally, four mixes of samples were analysed in batches 3-5. An overview of the distribution 

of replicate samples in batches is shown in Tables S1 and S2.  
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Results 

Protein extraction from FFPE tissue 

Formalin fixation leads to the cross-linking of formaldehyde with several amino acid side chains, 

including lysine, arginine, histidine and cysteine. This preserves the tissue structure, but also 

results in poor protein solubilisation from FFPE tissue. Therefore, heating of FFPE tissue samples 

is commonly used to reverse cross-linking with formaldehyde (2). Here, three different protein 

extraction buffers, containing either 2% SDS, 1% SDC or 0.2% Rapigest, were compared to 

optimise the amount of extracted protein and the number of protein/peptide identifications. A 

higher protein amount (>30%) was extracted from tissue using the SDS buffer, in comparison with 

the Rapigest and SDC buffers (Figure 1A). Also, significantly (p≤0.001) more protein groups 

(>20%) and unique peptides (>30%), were identified using SDS buffer. 

A Venn diagram comparing proteins identified with the different extraction buffers tested reveals 

that 63% of proteins were identical in all samples (Figure 1B). Additionally, ~11% were present 

in samples from the SDS and SDC buffer extracts. Nearly 17% of all identified proteins were only 

present in samples from the SDS extraction buffer. The number of missed cleavages in SDS (22%) 

and Rapigest (20%) samples was significantly (p≤0.001) higher than in those using SDC buffer 

(13%) (Figure 1C). The coefficient of variation from four technical replicates, ranging from 16 to 

18%, was similar for all three buffers (Figure 1D). 

Overall, the SDS containing buffer showed the best results and was consequently chosen for use 

in the optimised protocol. Additionally, we tested altering the concentration of SDS to investigate 

if the extracted protein amount could be further increased. However, comparison of buffers with 

2% and 5% SDS, respectively, showed little or no difference in either the resulting peptide 
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recovery, or in the numbers of protein/peptide identifications (Figure S1A). 85% of the identified 

proteins were identical in samples from both buffers (Figure S1B).  

After initial protein extraction, some residual tissue often remains. Thus, an additional extraction 

step was performed to determine if this could improve total protein recovery. On average, up to an 

additional ~15% of the protein amount from the first extract could be obtained with a second 

extraction. With an equal peptide amount injected, 14% less proteins and 20% less peptides were 

identified from the second extraction (Figure S2A). Furthermore, most of the identified proteins 

were already detected in the first extract (Figure S2B). However, the majority of protein intensities 

were lower compared to those in the first extract (Figure S2C). Thus, a second solubilisation step 

typically does not extract a significant number of additional new proteins from the tissue, but rather 

increases the total levels of the previously extracted proteins.  

To identify specific cells of interest in a morphological context, staining of the tissue sample is 

often required. Therefore, the influence of IHC and H&E staining of proteins in FFPE tissues was 

investigated. Sections were stained with rabbit anti-tyrosine hydroxylase pAb using 

diaminobenzidine and consequently the impact of IHC on proteins was investigated. As shown in 

Figure S3A, there was no significant difference in protein and peptide identifications between 

stained and unstained samples. Also, the fraction of missed cleavages was similar (Figure S3B). 

The correlation matrix in Figure S3C shows clustering of samples based on the donor, instead of 

staining. Overall, the data show that immunohistochemical staining with diaminobenzidine has 

little or no negative impact on the efficiency of extraction and detection of tissue proteins.  

In comparison, H&E staining resulted in a negative impact on the obtained peptide amount, 

compared to nuclear- and unstained tissue with a loss of up to 80% (Figure S4A). However, protein 

and peptide identifications remained similar, when an equal peptide amount was injected (Figure 
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S4B&C). The sample preparation was modified to improve the obtained peptide amount and 

reduction and alkylation were performed after the SP3 protein wash step, followed by tryptic 

digestion. Using this modified protocol, the peptide recovery from H&E stained tissue was similar 

to the one from unstained tissue. The correlation matrices in Figure S4D&E confirm these data. 

Samples prepared with the usual method (reduction/alkylation before SP3 protein clean up) 

clustered on the staining patterns. When using the modified method (reduction/alkylation after SP3 

protein clean up), samples clustered by donor identity. 

 

SP3 digest 

As SDS will interfere with protein digestion and MS measurements, samples need to be cleaned 

to remove SDS before tryptic digestion. This was done using the SP3 digest method. However, 

when using the original method, significant sample loss occurred. Thus, protein and peptide 

washing steps were optimized. In the protein wash step, different pH values of the washing solution 

(from pH 3 to pH 8) were tested. Additionally, the final concentration of ACN was increased to 

70%. Twenty percent more proteins could be recovered, using a solution with pH 8 and 70% ACN, 

compared to the original conditions with pH 3 and 50% ACN (Figure S5A). Furthermore, we 

tested whether the peptide wash step after digestion can be removed, considering that the digestion 

solutions ammonium bicarbonate and triethylammonium bicarbonate can easily be evaporated. 

However, it was shown in label-free MS measurements from samples after digestion that the 

protein wash was not sufficient to remove SDS completely. SDS contamination present in the 

sample interfered with the analysis, as shown in Figure S5C. In comparison, a sample prepared 

with the peptide wash step after digestion showed a homogenous elution of peptides over the whole 

retention time range (Figure S5D). Therefore, different washing approaches were tested, e.g. the 
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use of a sonication bath, shaker, pipetting and rotator. However, they did not improve the outcome, 

showing that the peptide wash after digestion is required to remove any residual SDS present in 

the sample. Next, therefore, we optimized this step to overcome low peptide recovery seen using 

the original conditions, i.e., with 95% ACN in the washing solution. Acidification to a final 

concentration of 1% formic acid, together with 95% ACN, improved the recovery of peptides by 

60% (Figure S5B). Overall, with the above modifications to the original protocol, the recoveries 

of proteins and peptides were improved significantly for both washing steps. 

 

Enrichment of neuron-specific proteins in microdissected samples compared to intact tissue 

sections 

Laser-capture microdissection enables the purification of cell subpopulations from heterogeneous 

tissue specimens. Therefore, even minor cell subpopulations can be enriched using this technique. 

Here, we compared microdissected samples from substantia nigra tissue specimens with intact 

sections to test the efficiency of LCM (Figure S6). For each of five healthy donors, one intact 

tissue section and 3,000 cells, isolated with LCM, were analysed using a label-free shotgun MS 

approach. 

The volcano plot in Figure 2A shows a high number of proteins with a lower intensity in 

microdissected samples, compared to sections. However, 182 proteins showed a minimum two-

fold increase in protein intensity. Bioinformatic analysis of these proteins compared to the human 

proteome revealed an enrichment of neuron-specific GO cellular components, including synapse, 

neuron projection and dendrite (Figure 2B). Conversely, 736 proteins had a minimum 2-fold lower 

intensity compared to entire sections. These were enriched for the GO terms ribosome and 

nucleosome, as well as the terms extracellular exosome, membrane and cytosol (Figure 2C). When 
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using a smaller and brain-specific protein set as background (identified proteins from intact 

sections and microdissected substantia nigra) the enriched GO cellular components of proteins 

with lower intensity didn’t change. However, proteins with higher intensity in microdissected 

tissue samples showed only enrichment of two GO terms, which didn’t include any neuron-specific 

ones.  

As shown in Figure 2D, neuron-specific proteins were detected with higher intensity in 

microdissected samples from most of the donors, compared to the corresponding tissue sections. 

For example, tyrosine hydroxylase, the marker for dopaminergic neurons, which are present in 

substantia nigra tissue, was enriched ~8-fold in donor 2. Alpha-synuclein (SNCA), a component 

of Lewy bodies, which are a pathological hallmark of Parkinson’s disease, was 2.5-fold higher in 

donors 3 and 5. Tyrosine-protein phosphatase non-receptor type 5 (PTPN5), a brain-enriched 

protein involved in the regulation of synaptic plasticity, was significantly enriched in all donors, 

with a minimum 8-fold higher intensity in microdissected samples. Protein phosphatase 1 

regulatory subunit 1B (PPP1R1B), a dopamine- and cAMP-regulated neuronal phosphoprotein, 

showed an average increase of ~12-fold. Overall, the data show the efficacy of LCM for the 

enrichment of not only specific cell subpopulations, but also proteins, which are only expressed in 

these subpopulations and are likely to be suppressed by higher abundance proteins from the 

surrounding proteome. 

 

Analysis of the proteome of substantia nigra 

The optimized protocol was applied to laser-capture microdissected human substantia nigra tissue. 

In total, 46 replicate samples from 15 healthy donors were analysed in five TMT batches. The 

distribution of donors and technical replicates across the batches is shown in Tables S1 and S2. As 
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part of the ongoing optimization process, there were variations in the method used between the 

separate TMT batches. Specifically, 16 fractions were analysed in batches 1 & 2, resulting in the 

identification of >4,300 protein groups (minimum two peptides per protein) per batch. Next, the 

number of fractions was increased to 24, resulting in ~4,800 protein group identifications in batch 

3 (Table 1). Shorter gradient and run times were tested in batch 4, which reduced the time required 

to analyse 24 fractions but also resulted in significantly lower protein identifications. Thus, for 

batch 5, the previous 4 h MS method was used. In comparison to label-free shotgun analysis of the 

same samples it was possible to increase the number of quantified protein groups and unique 

peptides by minimum 220% using 16 fractions and even by minimum 300% when analysing 24 

fractions (Figure S8).  

Overall, 5,677 protein groups (with minimum two peptides per protein) and 53,475 unique 

peptides were identified (Table 1, Table S3). Per replicate sample 3,500-4,800 protein groups and 

21,000-35,000 unique peptides were quantified. When including formylation and methylation as 

variable modifications around 200 protein groups and 1,400 unique peptides per batch were 

identified additionally (Table S6). 4.7% and 3.3% of identified peptides were formylated or 

methylated.  

When analysing multiple TMT batches, the effect of batch variation, as shown in Figure S9A, 

must be controlled for. The correlation of protein intensities for samples within batches is high, 

with typical Pearson coefficients above 0.9, while samples from different batches show a lower 

correlation, with coefficients of ~0.8. Therefore, a normalization strategy was applied to the data, 

which included median-normalization, addressing differences in sample loadings, as well as batch 

normalization, addressing the differences between batches. Figure S9B shows that the correlation 

of normalized protein intensities of samples from different batches increased to >0.9. Sample 7.1 
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was deemed an outlier and consequently excluded from further analysis. The intensities from 

technical replicates per donor were averaged. The correlation of protein intensities between donors 

was high, with Pearson coefficients of >0.95 (Figure S10A). The technical coefficient of variation 

from 4-7 technical replicates was between 11 and 16% for donors 1 to 6 (Figure S10B). The 

biological coefficient of variation from 15 different donors was 22% (Figure S10C). 

 

Functional enrichment of the nigral proteome 

Nigral proteins were sorted based on their intensity (average of all donors) and divided into 

quartiles (Figure 3A). Proteins from each quartile were associated with GO cellular components 

and biological processes, along with Kegg pathways, using DAVID analysis. Regarding GO 

biological processes proteins participating in RNA splicing, mitochondrial translation and 

autophagy were enriched in quartiles 3 and 4, while TCA cycle, substantia nigra development and 

neurotransmitter secretion were enriched in quartile 1, corresponding to the highest abundance 

proteins (Figure 3B). Proteins from the extracellular exosome and proteins annotated with several 

neuron-specific GO cellular components, such as myelin sheath, synapse, neuron projection, 

dendrite, axon and synaptic vesicle, were also enriched in quartile 1 (Figure 3C&D). Lower 

abundance proteins, from the lysosome and trans-Golgi network, were enriched in quartiles 3 and 

4. Annotation of Kegg pathways revealed the enrichment of proteins from the spliceosome and 

phosphatidylinositol signalling system among the lower abundance proteins, while synaptic 

vesicle cycle, dopaminergic synapse, TCA cycle and oxidative phosphorylation, were among the 

enriched pathways in quartile 1 (Figure S11).  

  

 at U
N

IV
E

R
SIT

Y
 O

F D
U

N
D

E
E

 on M
arch 5, 2020

https://w
w

w
.m

cponline.org
D

ow
nloaded from

 

https://www.mcponline.org


22 
 

Discussion 

To better understand disease phenotypes it is necessary to analyse specific cell subpopulations, 

rather than heterogeneous mixtures of cells, which may be present in tissues in varying numbers. 

The laser-capture microdissection (LCM) technique can be applied to purify either specific cell 

populations, or tissue regions, for subsequent proteomic analysis. In this study, we optimized a 

protocol for the proteomic analysis of laser-capture microdissected FFPE tissue, using limited 

sample amounts. We tested different buffers to achieve efficient protein extraction from FFPE 

tissue samples, obtaining the best results with SDS containing buffer. SDS was removed from 

protein extracts, prior to digestion, using a modified SP3 method that improved protein and peptide 

recoveries. Also, we compared microdissected samples from human substantia nigra with intact 

tissue sections to investigate the efficiency of LCM for the isolation of distinct cell subpopulations 

in a morphological context. This resulted in the enrichment of neuron-specific proteins in 

microdissected samples. Finally, the optimized protocol was applied to analyse a set of FFPE 

human substantia nigra samples microdissected from healthy donors. Based on the intensity of 

nigral proteins identified, this demonstrated the enrichment of specific GO terms and Kegg 

pathways for different protein abundance classes.  

Protein extraction of FFPE tissue is challenging, mainly due to the cross-links and modifications 

induced by formaldehyde treatment. However, heating of FFPE samples is known to reverse these 

cross-links, resulting in improved protein extraction. Also, different buffer components, including 

detergents and organic solvents, can enhance protein solubilisation from FFPE samples. Thus, 

SDS in combination with Tris (9,21) and Rapigest with ammonium bicarbonate (22-24), are widely 

used in extraction buffers. Therefore, we tested these two compositions in comparison with a 

buffer containing SDC and Tris used in-house, which revealed that the SDS containing buffer 
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provided the best results regarding extracted protein amount and numbers of protein/peptide 

identifications. This is in agreement with previous studies, which used SDS for efficient extraction 

from FFPE tissue (8,9,21). SDS concentrations of 2% in extraction buffers for FFPE samples are 

often used (25-27). However, recently proteins were extracted with a buffer containing 5% SDS 

(28). Thus, we compared both SDS concentrations, which didn’t show any significant difference. 

The SDC buffer yielded also higher protein/peptide identification numbers compared to the 

Rapigest buffer, despite lower extracted protein amounts. We note that the concentrations of the 

detergents in the tested buffers were different as it was our aim to compare buffers from published 

studies with an already in-house used one. However, a conclusion regarding the extraction 

efficiency of these detergents cannot be drawn from the here described results. Higher 

concentrations of Rapigest and SDC might increase extracted protein amounts and identification 

numbers. In addition, two digestion methods were applied, which might differ in sample loss and 

digestion efficiency resulting in varying numbers of missed cleavages and identifications. 

However, similar to the detergents a conclusion regarding a better digestion method cannot be 

drawn from the presented results.  

Tissue proteins were extracted in a buffer containing 300 mM Tris, to support the reversal of cross-

links. Usually, concentrations up to 100 mM Tris are used, but as Kawashima et al. recently 

described, a higher concentration of Tris increases the amount of extracted proteins (29). Tris, 

which contains a primary amine, might act either as a scavenger of released formaldehyde, or as a 

transamination catalyst. After protein extraction residual tissue was usually still present. It has 

been shown previously that additional extraction steps can improve the overall yield (30,31). Lai 

et al. reported protein amounts of over 100% of the first extract in a second and up to 70% in a 

third extraction (30). However, they homogenised samples only in the second extraction step. 
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Additionally, proteins were extracted in ammonium bicarbonate alone resulting in insufficient 

protein solubilisation. Here, a second extraction increased the protein amount by an average of 

~15% of the first extract and was implemented into the protocol for the analysis of microdissected 

substantia nigra samples. However, considering the amount of time the extraction procedure 

requires, we suggest this step might best be included only when insufficient quantities of proteins 

are recovered after the first extraction.  

For the reliable isolation of morphologically distinct cell populations, staining of proteins of 

interest (IHC), or histological staining (H&E), is often necessary. Here, we tested the impact of 

staining techniques on protein recovery and yield. In agreement with previous studies, we 

demonstrated that IHC didn’t alter the number of protein identifications, compared to unstained 

tissue samples (7). Similar to recent reports, we showed that H&E staining reduces peptide 

identifications up to 20%, while protein numbers were similar between samples with different 

stainings (22). However, we observed ~ 80% loss in the peptides obtained after tryptic digestion. 

Additionally, the correlation matrix showed clustering of samples based on their staining patterns, 

rather than donor identity. Therefore, to optimize the protocol, the order of reduction/alkylation 

and protein clean-up was switched, which increased the peptide quantities recovered after 

digestion and resulted in samples clustered in the correlation matrix, independent of their staining. 

This improvement is probably related to the absence of eosin, an acidic dye, which binds to basic 

amino acid side chains of cytosolic proteins. When present in the buffer, eosin might react with 

iodoacetamide, considering that eosin-5-iodoacetamide, a thiol-reactive fluorophore, was 

previously used to derivatize proteins (32,33). This reaction would result in bulky protein 

modifications, which can interfere with digestion and increase the number of missed cleavages.  
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SDS is known to inhibit digestion enzymes and interfere with downstream LC-MS analysis and 

therefore needs to be removed prior to these steps. Therefore, samples prepared in SDS buffer 

were processed using the SP3 method (15), which includes a protein clean-up step before and a 

peptide clean-up step after digestion. However, in our hands, using the original protocol, protein 

and peptide recoveries were lower than reported. We therefore tested modifications to improve the 

SP3 protocol. Following previous studies, the protein wash solution was changed to conditions 

with pH 8 and 70% ACN (34,35). To avoid sample losses through unnecessary preparation steps 

and considering that digestion and TMT labelling can be performed in the same buffer system, we 

tried to remove the peptide wash step. However, chromatograms of samples prepared without 

clean-up showed interference, probably caused by the presence of SDS suppressing peptide 

ionization. Conversely, samples prepared using the peptide wash step didn’t show any interference 

with contaminants. Therefore, the peptide wash step was retained and supplemented by 

acidification of the washing solution to improve peptide recovery. We believe this improves the 

efficiency of both the original protocol and subsequent studies using the SP3 method.  

The comparison of analysing microdissected samples and intact sections showed a higher number 

of protein identifications in the intact tissue sections, with the majority having a higher intensity. 

This contrasts with a recent study, where more proteins were identified in microdissected samples, 

compared to intact sections from breast cancer tissues (36). Neuron-specific proteins were enriched 

in microdissected samples, whereas ribosomal and nucleosomal proteins demonstrated lower 

intensities. The substantia nigra consists of different cell populations, including different neurons 

(dopaminergic, GABAergic, glutamatergic) and glial cells (astrocytes, oligodendroglia and 

microglia) (37,38). Reports suggest that glial cells are present in a higher number compared to 

dopaminergic neurons (39). Here, we microdissected 3,000 cells from areas containing dense 
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dopaminergic neurons, which are visible by brown-pigmented neuromelanin. Thus, the results 

demonstrate that, by using LCM, we could enrich the neuronal cells compared to the surrounding 

tissue, which contains more glial cells.  

Enriched GO terms from proteins with lower intensity in microdissected samples didn’t differ 

when using different protein sets (human and brain-specific proteome) as background for the 

functional enrichment analysis. However, neuron-specific GO terms from proteins with higher 

intensity were only enriched, when the human proteome was used as background showing that 

there is no difference between both areas analysed regarding the identity of neuronal proteins. 

Nevertheless, several neuron-specific proteins were detected with a significantly higher intensity 

in microdissected samples including tyrosine hydroxylase, a marker for dopaminergic neurons 

(40). Alpha-synuclein (SNCA) is involved in Parkinson’s disease via the accumulation and 

formation of Lewy bodies, which are a pathological hallmark of Parkinson’s disease (41). In the 

substantia nigra SNCA is expressed in neuronal cell bodies and synapses as well as TH-positive 

neurons (42) 

This study analysed a total of five TMT batches of microdissected samples. However, they were 

not all measured using the exact same procedure, with differences in batch design regarding the 

number of fractions, number of technical replicates and LC-MS methods, as described in the 

results. With this limitation, we decided to combine the results of all five batches, despite their 

differences in analysis and design, to provide a “proof of principle” of laser-capture proteomics, 

using small sample amounts from a set of healthy donors. When more than one TMT batch is 

analysed, the problem of variation between batches occurs, as shown here in the correlation matrix 

and reported in previous studies (43). Usually, a reference sample is included in all batches, which 

is then used for normalization (43,44). Here, we applied an alternative normalization strategy that 
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involved summing up intensities of all ten channels per protein within a batch and using these 

sums from all batches to calculate a reference value for normalization. Using this strategy, the 

variation between batches could be reduced. This provides a good alternative for batch 

normalisation in cases where no common reference samples are available.  

In this study we used a peptide:TMT ratio of 1:10. The standard ratio suggested from the 

manufacturer is 1:8. However, the number of overlabelled peptides (average of 13%, data not 

shown), which have a TMT modification on Ser, Thr or His, didn’t change compared to the 

commonly used ratio (45). Although the majority of formaldehyde cross-links can be reversed by 

heating, there are still irreversible modifications with formaldehyde present. It has been shown 

recently that formylation and methylation on lysine are common modifications in FFPE tissue 

samples (46-48). However, these modifications are rarely included in the database search in studies 

using FFPE material. Here, we performed an additional search including formylation and 

methylation as variable modifications. Consequently, the number of identifications increased by 

approx. 5%.  

Recently, a growing number of proteomic studies have been performed using LCM to analyse 

cellular subpopulations in a pathological context. For instance, Clair et al. purified lung alveoli 

from cryo sections with a total area of 4 mm2 and identified more than 3,446 proteins (minimum 

2 peptides per protein) in a label-free approach (49). Shapiro et al. isolated pancreatic acinar cells 

from FFPE tissue with a total area of 1 mm2 (~10,000 cells corresponding to 2-3 μg protein) and 

identified in total 2,995 proteins (24) in a murine model of caerulein-induced pancreatitis, with a 

label-free shotgun approach. Buczak et al. isolated different tumour sectors and compared tumour 

with non-tumour tissue of hepatocellular carcinoma from FFPE tissue. 40 mm2 per region (5-10 

μg peptide) were dissected and 5,838 and 5,659 protein groups, were identified per batch in a 
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TMT-based approach using fractions (9). In the current study we isolated as little as 3,000 cells, 

corresponding to areas of 1-3 mm2 and 1-4 μg peptide and identified in total over 5,600 protein 

groups with a range of 3,500 to 4,800 protein groups per batch. Considering that protein amount 

and content vary between different tissues and cells, we can conclude that protein numbers from 

this study are in agreement with, if not higher than, protein detection reported in most of the 

previous studies. Interestingly, Davis et al. reported recently the analysis of Betz and Purkinje cells 

isolated from frozen human brain tissue in a label-free shotgun approach using only 150 cells 

resulting in the identification of 2718 and 2025 protein groups with minimum 2 peptides per 

protein. In this study microdissected tissue was directly collected in RIPA buffer followed by 

digestion with the SP3 method (50). Additionally, it was shown that digestion directly in the cap 

could significantly improve identification numbers for a low amount of cells (100-400) revealing 

that the transfer of microdissected tissue from the cap into tubes is a critical point, which could 

lead to significant sample losses when working with small sample amounts. Therefore, collection 

of microdissected tissue directly in buffer might further improve results.  

Several proteomic studies have analysed the substantia nigra, motivated by its importance in the 

pathology of Parkinson’s disease and other neurodegenerative diseases (5,11-14). However, in 

previous studies, the region has often been macrodissected with a scalpel, which is not as precise 

as LCM. Also, these studies were often performed with cryo sections, rather than with the FFPE 

tissue used here. For example, in 2014 Licker et al. analysed the substantia nigra from healthy 

donors and donors with Parkinson’s disease and identified 1,795 proteins (13), while Plum et al. 

analysed the neuromelanin granules, which were isolated by LCM and identified 1,072 proteins 

(5). 97% of these proteins were also detected in the present study (Figure 4). 
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We present an optimized protocol for laser-capture proteomics using small sample amounts of 

FFPE tissue, which was applied to human substantia nigra samples. We demonstrate a detailed 

investigation of the protein extraction step by comparing different buffers and testing the influence 

of IHC and H&E staining and show the efficiency of LCM by comparing microdissected samples 

with intact sections. The substantia nigra, with all its different cell populations, was used for this 

method development study, rather than a specific cell population, such as tyrosine hydroxylase 

positive neurons. In conclusion, this study is, to the best of our knowledge, the most detailed 

proteomic dataset of human substantia nigra reported so far. We note that in Parkinson’s disease 

the loss of dopaminergic neurons occurs in the substantia nigra, while those in the ventral 

tegmental area are more resistant to degeneration. It will therefore be important in future to 

distinguish neurons from both brain regions and analyse their proteomes in the course of 

Parkinson’s disease. The laser-capture proteomic method established here can now be applied to 

analyse the protein expression of dopaminergic neurons in a pathological context. 
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Tables 

Table 1: Overview of protein and peptide identifications in all analysed TMT batches. *Minimum 

2 peptides per protein. 

Batch Fractions # Protein 
groups (2*) 

# Unique 
peptides 

1 16 4,343 29,887 
2 16 4,424 31,941 
3 24 4,812 35,725 
4 24 3,514 21,260 
5 24 3,606 21,279 

Total 104 5,677 53,475 
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Figures 

 

Figure 1: Optimization of protein extraction from FFPE tissue samples. (A) Protein amount 

extracted from FFPE human substantia nigra (1 section, 4 μm) and number of protein groups 

(minimum 2 peptides per protein) and unique peptides identified using different protein 

extraction buffers. Data is shown as means ± SD (n=4, * p≤0.001, ** p≤0.02) and as % of SDS 

buffer (100% = 45 μg protein, 2,370 protein groups, 18,560 peptides). (B) Venn diagram 

representing the number of identified protein groups, which are unique and common in samples 

from different extraction buffers. (C) Fraction of peptides with zero, one and two missed 

cleavages. Data is shown as means ± SD (n=4, * p≤0.001). (D) Box Plot showing the coefficient 

of variation (CV) of median-normalized protein intensities from technical replicates (n=4). 
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Figure 2: Comparison of microdissected tissue samples with intact sections. (A) Volcano Plot 

representing the log2 fold changes in protein intensities vs. the negative log10-transformed p-

values (two-tailed, equal variance t-test) of microdissected substantia nigra (~3,000 cells) vs. 

intact tissue sections (10 μm). Data is based on 11 replicate samples from intact sections and 

13 replicates from microdissected samples, which were prepared from total 5 biological 

replicates. Proteins with fold changes ≥2 (blue) or ≤2 (red) and p-values ≤0.01 (dark) or ≤0.05 

(light) are displayed in colour. Neuron-specific proteins are presented in green. (B) GO cellular 

components enriched in microdissected substantia nigra compared to intact sections 

(Benjamini-corrected p-value <0.01, protein count ≥10). The human proteome was used as 
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background. (C) GO cellular components with lower intensity in microdissected substantia 

nigra compared to intact sections (Benjamini- corrected p-value <0.01, protein count ≥10). The 

human proteome was used as background. (D) Heat map representing the fraction of intensity 

of microdissected samples and intact sections for neuron-specific proteins.  

 

 

Figure 3: Functional enrichment of the nigral proteome (A) Histogram representing the 

intensity range of the nigral proteins identified. Depending on their intensity proteins were 

divided into four quartiles. (B) Heat map showing GO biological processes, which were 

enriched in each of the quartiles (Benjamini-corrected p-value <0.05, protein count ≥1%). (C) 

Heat map showing GO cellular components enriched in each of the quartiles (Benjamini-

corrected p-value <0.05, protein count ≥1%). (D) Heat map showing neuronal GO cellular 

components enriched in each of the quartiles (Benjamini-corrected p-value <0.05, protein 

count ≥1%). 
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Figure 4: Comparison of protein identifications between different studies. Venn diagram 

showing the number of identified proteins from published studies compared to the present one. 
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