472 research outputs found

    Hadroproduction and Polarization of Charmonium

    Get PDF
    In the limit of heavy quark mass, the production cross section and polarization of quarkonia can be calculated in perturbative QCD. We study the pp_\perp-averaged production of charmonium states in πN\pi N collisions at fixed target energies. The data on the relative production rates of \jp and χJ\chi_J is found to disagree with leading twist QCD. The polarization of the \jp indicates that the discrepancy is not due to poorly known parton distributions nor to the size of higher order effects (KK-factors). Rather, the disagreement suggests important higher twist corrections, as has been surmised earlier from the nuclear target AA-dependence of the production cross section.Comment: 19 page

    Color-Octet J/ψJ/\psi Production at Low pp_\perp

    Full text link
    We study contributions from color-octet quarkonium formation mechanisms to J/ψJ/\psi hadroproduction at low pp_\perp. We include transitions of color-octet ccˉc\bar{c} states into ``direct'' J/ψJ/\psi and into χ1,2\chi_{1,2} which decay radiatively into a J/ψJ/\psi. Together with earlier work, this calculation constitutes a complete analysis of pp_\perp-integrated J/ψJ/\psi production at leading twist. We find that the leading-twist contribution is not sufficient to reproduce the observed production rates and polarization of the J/ψJ/\psi and χ1,2\chi_{1,2}. Hence there must exist other important quarkonium production mechanisms at low pp_\perp.Comment: REVTEX, 18 pages, 4 figures include

    B decays

    Get PDF
    We review the prospects for B decay studies at the LHC. Contributing authors: J. Baines, S.P. Baranov, P. Bartalini, M. Beneke, E. Bouhova, G. Buchalla, I. Caprini, F. Charles, J. Charles, Y. Coadou, P. Colangelo, P. Colrain, J. Damet, F. De Fazio, A. Dighe, H. Dijkstra, P. Eerola, N. Ellis, B. Epp, S. Gadomski, P. Galumian, I. Gavrilenko, S. George, V.M. Ghete, V. Gibson, L. Guy, Y. Hasegawa, P. Iengo, A. Jacholkowska, R. Jones, A. Khodjamirian, E. Kneringer, P. Koppenburg, H. Korsmo, N. Labanca, L. Lellouch, M. Lehto, Y. Lemoigne, J. Libby, J. Matias, S. Mele, M. Misiak, A.M. Nairz, T. Nakada, A. Nikitenko, N. Nikitin, A. Nisati, F. Palla, E. Polycarpo, J. Rademacker, F. Rizatdinova, S. Robins, D. Rousseau, W. Ruckstuhl, M.A. Sanchis, O. Schneider, M. Shapiro, C. Shepherd-Themistocleous, P. Sherwood, L. Smirnova, M. Smizanska, A. Starodumov, N. Stepanov, Z. Xie, N. Zaitse

    First Measurement of the Strange Quark Asymmetry at the Z0Z^{0} Peak

    Get PDF

    Measurement of inclusive π0\pi^{0} production in hadronic Z0Z^{0} decays

    Get PDF
    An analysis is presented of inclusive \pi^0 production in Z^0 decays measured with the DELPHI detector. At low energies, \pi^0 decays are reconstructed by \linebreak using pairs of converted photons and combinations of converted photons and photons reconstructed in the barrel electromagnetic calorimeter (HPC). At high energies (up to x_p = 2 \cdot p_{\pi}/\sqrt{s} = 0.75) the excellent granularity of the HPC is exploited to search for two-photon substructures in single showers. The inclusive differential cross section is measured as a function of energy for {q\overline q} and {b \bar b} events. The number of \pi^0's per hadronic Z^0 event is N(\pi^0)/ Z_{had}^0 = 9.2 \pm 0.2 \mbox{(stat)} \pm 1.0 \mbox{(syst)} and for {b \bar b}~events the number of \pi^0's is {\mathrm N(\pi^0)/ b \overline b} = 10.1 \pm 0.4 \mbox{(stat)} \pm 1.1 \mbox{(syst)} . The ratio of the number of \pi^0's in b \overline b events to hadronic Z^0 events is less affected by the systematic errors and is found to be 1.09 \pm 0.05 \pm 0.01. The measured \pi^0 cross sections are compared with the predictions of different parton shower models. For hadronic events, the peak position in the \mathrm \xi_p = \ln(1/x_p) distribution is \xi_p^{\star} = 3.90^{+0.24}_{-0.14}. The average number of \pi^0's from the decay of primary \mathrm B hadrons is found to be {\mathrm N} (B \rightarrow \pi^0 \, X)/\mbox{B hadron} = 2.78 \pm 0.15 \mbox{(stat)} \pm 0.60 \mbox{(syst)}

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe

    Energy dependence of the differences between the quark and gluon jet fragmentation

    Get PDF
    Three jet events arising from decays of the Z boson, collected by the DELPHI detector, were used to measure differences in quark and gluon fragmentation. Gluon jets were anti-tagged by identifying b quark jets. Unbiased quark jets came from events with two jets plus one photon. Quark and gluon jet properties in different energy ranges were compared for the first time within the same detector. Quark and gluon jets of nearly the same energy in symmetric three jet event topologies were also compared. Using three independent methods, the average value of the ratio of the mean charged multiplicities of gluon and quark jets is =1.241±0.015 (stat.)±0.025 (syst.). =1.241\pm 0.015\ (stat.) \pm 0.025\ (syst.). Gluon jets are broader and produce fragments with a softer energy spectrum than quark jets of equivalent energy. The string effect has been observed in fully symmetric three jet events. The measured ratio R_{\gamma} of the charged particle flow in the q\overline{q} inter-jet region of the q\bar{q}g and q\bar{q}\gamma samples agrees with the perturbative QCD expectation. The dependence of the mean charged multiplicity on the hadronic center-of-mass energy was analysed in photon plus n-jet events. The value for \alpha_s(M_Z) determined from these data using a QCD prediction with corrections at leading and next-to-leading order is \[ \alpha_s(M_Z)=0.116 \pm 0.003\ (stat.) \pm 0.009\ (syst.). \

    Updated precision measurement of the average lifetime of B hadrons

    Get PDF
    The measurement of the average lifetime of B hadrons using inclusively reconstructed secondary vertices has been updated using both an improved processing of previous data and additional statistics from new data. This has reduced the statistical and systematic uncertainties and gives \tau_{\mathrm{B}} = 1.582 \pm 0.011\ \mathrm{(stat.)} \pm 0.027\ \mathrm{(syst.)}\ \mathrm{ps.} Combining this result with the previous result based on charged particle impact parameter distributions yields \tau_{\mathrm{B}} = 1.575 \pm 0.010\ \mathrm{(stat.)} \pm 0.026\ \mathrm{(syst.)}\ \mathrm{ps.

    A detailed study of the very-high-energy Crab pulsar emission with the LST-1

    Get PDF
    Context: There are currently three pulsars firmly detected by imaging atmospheric Cherenkov telescopes (IACTs), two of them reaching TeV energies, challenging models of very-high-energy (VHE) emission in pulsars. More precise observations are needed to better characterize pulsar emission at these energies. The LST-1 is the prototype of the Large-Sized Telescope, that will be part of the Cherenkov Telescope Array Observatory (CTAO). Its improved performance over previous IACTs makes it well suited for studying pulsars. Aims: To study the Crab pulsar emission with the LST-1, improving and complementing the results from other telescopes. These observations can also be used to characterize the potential of the LST-1 to study other pulsars and detect new ones. Methods: We analyzed a total of \sim103 hours of gamma-ray observations of the Crab pulsar conducted with the LST-1 in the period from September 2020 to January 2023. The observations were carried out at zenith angles less than 50 degrees. A new analysis of the Fermi-LAT data was also performed, including \sim14 years of observations. Results: The Crab pulsar phaseogram, long-term light-curve, and phase-resolved spectra are reconstructed with the LST-1 from 20 GeV to 450 GeV for P1 and up to 700 GeV for P2. The pulsed emission is detected with a significance of 15.2σσ. The two characteristic emission peaks of the Crab pulsar are clearly detected (>10σσ), as well as the so-called bridge emission (5.7σσ). We find that both peaks are well described by power laws, with spectral indices of \sim3.44 and \sim3.03 respectively. The joint analysis of Fermi-LAT and LST-1 data shows a good agreement between both instruments in the overlapping energy range. The detailed results obtained in the first observations of the Crab pulsar with LST-1 show the potential that CTAO will have to study this type of sources
    corecore