40 research outputs found

    Integration of a Relational Database in the CERN PS Control System

    Get PDF
    The control system for the CERN 26 GEV Proton Synchrotron and its injectors is a generic system which can be adapted to other accelerators. Most configuration data are in a relational database. From these data we can generate object interfaces for equipment, configuration files for front-end computers, a read-only database for accelerator control interfacing, and full dynamic documentation on the Web. The database is also used in real time for runtime references and archives, and for the working data of several programs

    Model based, detailed fault analysis in the CERN PS complex equipment

    Get PDF
    In the CERN PS Complex of accelerators, about a thousand of equipment of various type (power converters, RF cavities, beam measurement devices, vacuum systems etc...) are controlled using the so-called Control Protocol, already described in previous Conferences. This Protocol, a model based equipment access standard, provides, amongst other facilities, a uniform and structured fault description and report feature. The faults are organized in categories, following their gravity, and are presented at two levels: the first level is global and identical for all devices, the second level is very detailed and adapted to the peculiarities of each single device. All the relevant information is provided by the equipment specialists and is appropriately stored in static and real time data bases; in this way a unique set of data driven application programs can always cope with existing and newly added equipment. Two classes of applications have been implemented, the first one is intended for control room alarm purposes, and the second one is oriented for specialists diagnostics. The system is completed by a fault history report facility permitting easy retrieval of faults previously occurred, for example during the night

    Performance of the First ANTARES Detector Line

    Get PDF
    In this paper we report on the data recorded with the first Antares detector line. The line was deployed on the 14th of February 2006 and was connected to the readout two weeks later. Environmental data for one and a half years of running are shown. Measurements of atmospheric muons from data taken from selected runs during the first six months of operation are presented. Performance figures in terms of time residuals and angular resolution are given. Finally the angular distribution of atmospheric muons is presented and from this the depth profile of the muon intensity is derived.Comment: 14 pages, 9 figure

    Acoustic and optical variations during rapid downward motion episodes in the deep north-western Mediterranean Sea

    Get PDF
    An Acoustic Doppler Current Profiler (ADCP) was moored at the deep-sea site of the ANTARES neutrino telescope near Toulon, France, thus providing a unique opportunity to compare high-resolution acoustic and optical observations between 70 and 170 m above the sea bed at 2475 m. The ADCP measured downward vertical currents of magnitudes up to 0.03 m s-1 in late winter and early spring 2006. In the same period, observations were made of enhanced levels of acoustic reflection, interpreted as suspended particles including zooplankton, by a factor of about 10 and of horizontal currents reaching 0.35 m s-1. These observations coincided with high light levels detected by the telescope, interpreted as increased bioluminescence. During winter 2006 deep dense-water formation occurred in the Ligurian subbasin, thus providing a possible explanation for these observations. However, the 10-20 days quasi-periodic episodes of high levels of acoustic reflection, light and large vertical currents continuing into the summer are not direct evidence of this process. It is hypothesized that the main process allowing for suspended material to be moved vertically later in the year is local advection, linked with topographic boundary current instabilities along the rim of the 'Northern Current'.Comment: 30 pages, 7 figure

    The ANTARES Optical Beacon System

    Get PDF
    ANTARES is a neutrino telescope being deployed in the Mediterranean Sea. It consists of a three dimensional array of photomultiplier tubes that can detect the Cherenkov light induced by charged particles produced in the interactions of neutrinos with the surrounding medium. High angular resolution can be achieved, in particular when a muon is produced, provided that the Cherenkov photons are detected with sufficient timing precision. Considerations of the intrinsic time uncertainties stemming from the transit time spread in the photomultiplier tubes and the mechanism of transmission of light in sea water lead to the conclusion that a relative time accuracy of the order of 0.5 ns is desirable. Accordingly, different time calibration systems have been developed for the ANTARES telescope. In this article, a system based on Optical Beacons, a set of external and well-controlled pulsed light sources located throughout the detector, is described. This calibration system takes into account the optical properties of sea water, which is used as the detection volume of the ANTARES telescope. The design, tests, construction and first results of the two types of beacons, LED and laser-based, are presented.Comment: 21 pages, 18 figures, submitted to Nucl. Instr. and Meth. Phys. Res.

    Performance of the front-end electronics of the ANTARES neutrino telescope

    Get PDF
    ANTARES is a high-energy neutrino telescope installed in the Mediterranean Sea at a depth of 2475 m. It consists of a three-dimensional array of optical modules, each containing a large photomultiplier tube. A total of 2700 front-end ASICs named Analogue Ring Samplers (ARS) process the phototube signals, measure their arrival time, amplitude and shape as well as perform monitoring and calibration tasks. The ARS chip processes the analogue signals from the optical modules and converts information into digital data. All the information is transmitted to shore through further multiplexing electronics and an optical link. This paper describes the performance of the ARS chip; results from the functionality and characterization tests in the laboratory are summarized and the long-term performance in the apparatus is illustrated.Comment: 20 pages, 22 figures, published in Nuclear Instruments and Methods

    ANTARES: the first undersea neutrino telescope

    Get PDF
    The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design, the construction and the installation of the telescope in the deep sea, offshore from Toulon in France. An illustration of the detector performance is given

    Les automates dans les ateliers d’électrolyse

    No full text

    : 20/04/93

    No full text
    corecore