279 research outputs found

    The incorporation of matter into characteristic numerical relativity

    Full text link
    A code that implements Einstein equations in the characteristic formulation in 3D has been developed and thoroughly tested for the vacuum case. Here, we describe how to incorporate matter, in the form of a perfect fluid, into the code. The extended code has been written and validated in a number of cases. It is stable and capable of contributing towards an understanding of a number of problems in black hole astrophysics.Comment: 15 pages + 4 (eps) figure

    Tracking Black Holes in Numerical Relativity

    Full text link
    This work addresses and solves the problem of generically tracking black hole event horizons in computational simulation of black hole interactions. Solutions of the hyperbolic eikonal equation, solved on a curved spacetime manifold containing black hole sources, are employed in development of a robust tracking method capable of continuously monitoring arbitrary changes of topology in the event horizon, as well as arbitrary numbers of gravitational sources. The method makes use of continuous families of level set viscosity solutions of the eikonal equation with identification of the black hole event horizon obtained by the signature feature of discontinuity formation in the eikonal's solution. The method is employed in the analysis of the event horizon for the asymmetric merger in a binary black hole system. In this first such three dimensional analysis, we establish both qualitative and quantitative physics for the asymmetric collision; including: 1. Bounds on the topology of the throat connecting the holes following merger, 2. Time of merger, and 3. Continuous accounting for the surface of section areas of the black hole sources.Comment: 14 pages, 16 figure

    Energy Flow in the Hadronic Final State of Diffractive and Non-Diffractive Deep-Inelastic Scattering at HERA

    Get PDF
    An investigation of the hadronic final state in diffractive and non--diffractive deep--inelastic electron--proton scattering at HERA is presented, where diffractive data are selected experimentally by demanding a large gap in pseudo --rapidity around the proton remnant direction. The transverse energy flow in the hadronic final state is evaluated using a set of estimators which quantify topological properties. Using available Monte Carlo QCD calculations, it is demonstrated that the final state in diffractive DIS exhibits the features expected if the interaction is interpreted as the scattering of an electron off a current quark with associated effects of perturbative QCD. A model in which deep--inelastic diffraction is taken to be the exchange of a pomeron with partonic structure is found to reproduce the measurements well. Models for deep--inelastic epep scattering, in which a sizeable diffractive contribution is present because of non--perturbative effects in the production of the hadronic final state, reproduce the general tendencies of the data but in all give a worse description.Comment: 22 pages, latex, 6 Figures appended as uuencoded fil

    A Search for Selectrons and Squarks at HERA

    Get PDF
    Data from electron-proton collisions at a center-of-mass energy of 300 GeV are used for a search for selectrons and squarks within the framework of the minimal supersymmetric model. The decays of selectrons and squarks into the lightest supersymmetric particle lead to final states with an electron and hadrons accompanied by large missing energy and transverse momentum. No signal is found and new bounds on the existence of these particles are derived. At 95% confidence level the excluded region extends to 65 GeV for selectron and squark masses, and to 40 GeV for the mass of the lightest supersymmetric particle.Comment: 13 pages, latex, 6 Figure

    Search for W' bosons decaying to an electron and a neutrino with the D0 detector

    Get PDF
    This Letter describes the search for a new heavy charged gauge boson W' decaying into an electron and a neutrino. The data were collected with the D0 detector at the Fermilab Tevatron proton-antiproton Collider at a center-of-mass energy of 1.96 TeV, and correspond to an integrated luminosity of about 1 inverse femtobarn. Lacking any significant excess in the data in comparison with known processes, an upper limit is set on the production cross section times branching fraction, and a W' boson with mass below 1.00 TeV can be excluded at the 95% C.L., assuming standard-model-like couplings to fermions. This result significantly improves upon previous limits, and is the most stringent to date.Comment: submitted to Phys. Rev. Let

    Measurement of the Isolated Photon Cross Section in p-pbar Collisions at sqrt{s}=1.96 TeV

    Get PDF
    The cross section for the inclusive production of isolated photons has been measured in p anti-p collisions at sqrt{s}=1.96 TeV with the D0 detector at the Fermilab Tevatron Collider. The photons span transverse momenta 23 to 300 GeV and have pseudorapidity |eta|<0.9. The cross section is compared with the results from two next-to-leading order perturbative QCD calculations. The theoretical predictions agree with the measurement within uncertainties.Comment: 7 pages, 5 figures, submitted to Phys.Lett.

    Search for Supersymmetry in Di-Photon Final States at sqrt{s} = 1.96 TeV

    Get PDF
    We report results of a search for supersymmetry (SUSY) with gauge-mediated symmetry breaking in di-photon events collected by the D0 experiment at the Fermilab Tevatron Collider in 2002--2006. In 1.1 fb1^{-1} of data, we find no significant excess beyond the background expected from the standard model and set the most stringent lower limits to date for a standard benchmark model on the lightest neutralino and chargino masses of 125 GeV and 229 GeV, respectively, at 95% confidence

    Search for squarks and gluinos in events with jets and missing transverse energy using 2.1 fb-1 of ppbar collision data at sqrt(s)=1.96 TeV

    Get PDF
    A data sample corresponding to an integrated luminosity of 2.1 fb-1 collected by the D0 detector at the Fermilab Tevatron Collider was analyzed to search for squarks and gluinos produced in ppbar collisions at a center-of-mass energy of 1.96 TeV. No evidence for the production of such particles was observed in topologies involving jets and missing transverse energy, and 95% C.L. lower limits of 379 GeV and 308 GeV were set on the squark and gluino masses, respectively, within the framework of minimal supergravity with tan(beta)=3, A0=0, and mu<0. The corresponding previous limits are improved by 54 GeV and 67 GeV
    corecore