279 research outputs found
The incorporation of matter into characteristic numerical relativity
A code that implements Einstein equations in the characteristic formulation
in 3D has been developed and thoroughly tested for the vacuum case. Here, we
describe how to incorporate matter, in the form of a perfect fluid, into the
code. The extended code has been written and validated in a number of cases. It
is stable and capable of contributing towards an understanding of a number of
problems in black hole astrophysics.Comment: 15 pages + 4 (eps) figure
Tracking Black Holes in Numerical Relativity
This work addresses and solves the problem of generically tracking black hole
event horizons in computational simulation of black hole interactions.
Solutions of the hyperbolic eikonal equation, solved on a curved spacetime
manifold containing black hole sources, are employed in development of a robust
tracking method capable of continuously monitoring arbitrary changes of
topology in the event horizon, as well as arbitrary numbers of gravitational
sources. The method makes use of continuous families of level set viscosity
solutions of the eikonal equation with identification of the black hole event
horizon obtained by the signature feature of discontinuity formation in the
eikonal's solution. The method is employed in the analysis of the event horizon
for the asymmetric merger in a binary black hole system. In this first such
three dimensional analysis, we establish both qualitative and quantitative
physics for the asymmetric collision; including: 1. Bounds on the topology of
the throat connecting the holes following merger, 2. Time of merger, and 3.
Continuous accounting for the surface of section areas of the black hole
sources.Comment: 14 pages, 16 figure
Energy Flow in the Hadronic Final State of Diffractive and Non-Diffractive Deep-Inelastic Scattering at HERA
An investigation of the hadronic final state in diffractive and
non--diffractive deep--inelastic electron--proton scattering at HERA is
presented, where diffractive data are selected experimentally by demanding a
large gap in pseudo --rapidity around the proton remnant direction. The
transverse energy flow in the hadronic final state is evaluated using a set of
estimators which quantify topological properties. Using available Monte Carlo
QCD calculations, it is demonstrated that the final state in diffractive DIS
exhibits the features expected if the interaction is interpreted as the
scattering of an electron off a current quark with associated effects of
perturbative QCD. A model in which deep--inelastic diffraction is taken to be
the exchange of a pomeron with partonic structure is found to reproduce the
measurements well. Models for deep--inelastic scattering, in which a
sizeable diffractive contribution is present because of non--perturbative
effects in the production of the hadronic final state, reproduce the general
tendencies of the data but in all give a worse description.Comment: 22 pages, latex, 6 Figures appended as uuencoded fil
A Search for Selectrons and Squarks at HERA
Data from electron-proton collisions at a center-of-mass energy of 300 GeV
are used for a search for selectrons and squarks within the framework of the
minimal supersymmetric model. The decays of selectrons and squarks into the
lightest supersymmetric particle lead to final states with an electron and
hadrons accompanied by large missing energy and transverse momentum. No signal
is found and new bounds on the existence of these particles are derived. At 95%
confidence level the excluded region extends to 65 GeV for selectron and squark
masses, and to 40 GeV for the mass of the lightest supersymmetric particle.Comment: 13 pages, latex, 6 Figure
Search for W' bosons decaying to an electron and a neutrino with the D0 detector
This Letter describes the search for a new heavy charged gauge boson W'
decaying into an electron and a neutrino. The data were collected with the D0
detector at the Fermilab Tevatron proton-antiproton Collider at a
center-of-mass energy of 1.96 TeV, and correspond to an integrated luminosity
of about 1 inverse femtobarn. Lacking any significant excess in the data in
comparison with known processes, an upper limit is set on the production cross
section times branching fraction, and a W' boson with mass below 1.00 TeV can
be excluded at the 95% C.L., assuming standard-model-like couplings to
fermions. This result significantly improves upon previous limits, and is the
most stringent to date.Comment: submitted to Phys. Rev. Let
Measurement of the Isolated Photon Cross Section in p-pbar Collisions at sqrt{s}=1.96 TeV
The cross section for the inclusive production of isolated photons has been
measured in p anti-p collisions at sqrt{s}=1.96 TeV with the D0 detector at the
Fermilab Tevatron Collider. The photons span transverse momenta 23 to 300 GeV
and have pseudorapidity |eta|<0.9. The cross section is compared with the
results from two next-to-leading order perturbative QCD calculations. The
theoretical predictions agree with the measurement within uncertainties.Comment: 7 pages, 5 figures, submitted to Phys.Lett.
Search for Supersymmetry in Di-Photon Final States at sqrt{s} = 1.96 TeV
We report results of a search for supersymmetry (SUSY) with gauge-mediated
symmetry breaking in di-photon events collected by the D0 experiment at the
Fermilab Tevatron Collider in 2002--2006. In 1.1 fb of data, we find no
significant excess beyond the background expected from the standard model and
set the most stringent lower limits to date for a standard benchmark model on
the lightest neutralino and chargino masses of 125 GeV and 229 GeV,
respectively, at 95% confidence
Search for squarks and gluinos in events with jets and missing transverse energy using 2.1 fb-1 of ppbar collision data at sqrt(s)=1.96 TeV
A data sample corresponding to an integrated luminosity of 2.1 fb-1 collected
by the D0 detector at the Fermilab Tevatron Collider was analyzed to search for
squarks and gluinos produced in ppbar collisions at a center-of-mass energy of
1.96 TeV. No evidence for the production of such particles was observed in
topologies involving jets and missing transverse energy, and 95% C.L. lower
limits of 379 GeV and 308 GeV were set on the squark and gluino masses,
respectively, within the framework of minimal supergravity with tan(beta)=3,
A0=0, and mu<0. The corresponding previous limits are improved by 54 GeV and 67
GeV
- …