12 research outputs found

    Temporal isolation of neural processes underlying face preference decisions

    Get PDF
    Decisions about whether we like someone are often made so rapidly from first impressions that it is difficult to examine the engagement of neural structures at specific points in time. Here, we used a temporally extended decision-making paradigm to examine brain activation with functional MRI (fMRI) at sequential stages of the decision-making process. Activity in reward-related brain structures—the nucleus accumbens (NAC) and orbitofrontal cortex (OFC)—was found to occur at temporally dissociable phases while subjects decided which of two unfamiliar faces they preferred. Increases in activation in the OFC occurred late in the trial, consistent with a role for this area in computing the decision of which face to choose. Signal increases in the NAC occurred early in the trial, consistent with a role for this area in initial preference formation. Moreover, early signal increases in the NAC also occurred while subjects performed a control task (judging face roundness) when these data were analyzed on the basis of which of those faces were subsequently chosen as preferred in a later task. The findings support a model in which rapid, automatic engagement of the NAC conveys a preference signal to the OFC, which in turn is used to guide choice

    Compensatory premotor activity during affective face processing in subclinical carriers of a single mutant Parkin allele

    Get PDF
    Patients with Parkinson's disease suffer from significant motor impairments and accompanying cognitive and affective dysfunction due to progressive disturbances of basal ganglia–cortical gating loops. Parkinson's disease has a long presymptomatic stage, which indicates a substantial capacity of the human brain to compensate for dopaminergic nerve degeneration before clinical manifestation of the disease. Neuroimaging studies provide evidence that increased motor-related cortical activity can compensate for progressive dopaminergic nerve degeneration in carriers of a single mutant Parkin or PINK1 gene, who show a mild but significant reduction of dopamine metabolism in the basal ganglia in the complete absence of clinical motor signs. However, it is currently unknown whether similar compensatory mechanisms are effective in non-motor basal ganglia–cortical gating loops. Here, we ask whether asymptomatic Parkin mutation carriers show altered patterns of brain activity during processing of facial gestures, and whether this might compensate for latent facial emotion recognition deficits. Current theories in social neuroscience assume that execution and perception of facial gestures are linked by a special class of visuomotor neurons (‘mirror neurons’) in the ventrolateral premotor cortex/pars opercularis of the inferior frontal gyrus (Brodmann area 44/6). We hypothesized that asymptomatic Parkin mutation carriers would show increased activity in this area during processing of affective facial gestures, replicating the compensatory motor effects that have previously been observed in these individuals. Additionally, Parkin mutation carriers might show altered activity in other basal ganglia–cortical gating loops. Eight asymptomatic heterozygous Parkin mutation carriers and eight matched controls underwent functional magnetic resonance imaging and a subsequent facial emotion recognition task. As predicted, Parkin mutation carriers showed significantly stronger activity in the right ventrolateral premotor cortex during execution and perception of affective facial gestures than healthy controls. Furthermore, Parkin mutation carriers showed a slightly reduced ability to recognize facial emotions that was least severe in individuals who showed the strongest increase of ventrolateral premotor activity. In addition, Parkin mutation carriers showed a significantly weaker than normal increase of activity in the left lateral orbitofrontal cortex (inferior frontal gyrus pars orbitalis, Brodmann area 47), which was unrelated to facial emotion recognition ability. These findings are consistent with the hypothesis that compensatory activity in the ventrolateral premotor cortex during processing of affective facial gestures can reduce impairments in facial emotion recognition in subclinical Parkin mutation carriers. A breakdown of this compensatory mechanism might lead to the impairment of facial expressivity and facial emotion recognition observed in manifest Parkinson's disease

    Olfactory dysfunction, central cholinergic integrity and cognitive impairment in Parkinson’s disease

    Get PDF
    Olfactory dysfunction is common in subjects with Parkinson’s disease. The pathophysiology of such dysfunction, however, remains poorly understood. Neurodegeneration within central regions involved in odour perception may contribute to olfactory dysfunction in Parkinson’s disease. Central cholinergic deficits occur in Parkinson’s disease and cholinergic neurons innervate regions, such as the limbic archicortex, involved in odour perception. We investigated the relationship between performance on an odour identification task and forebrain cholinergic denervation in Parkinson’s disease subjects without dementia. Fifty-eight patients with Parkinson’s disease (mean Hoehn and Yahr stage 2.5 ± 0.5) without dementia (mean Mini-Mental State Examination, 29.0 ± 1.4) underwent a clinical assessment, [11C]methyl-4-piperidinyl propionate acetylcholinesterase brain positron emission tomography and olfactory testing with the University of Pennsylvania Smell Identification Test. The diagnosis of Parkinson’s disease was confirmed by [11C]dihydrotetrabenazine vesicular monoamine transporter type 2 positron emission tomography. We found that odour identification test scores correlated positively with acetylcholinesterase activity in the hippocampal formation (r = 0.56, P < 0.0001), amygdala (r = 0.50, P < 0.0001) and neocortex (r = 0.46, P = 0.0003). Striatal monoaminergic activity correlated positively with odour identification scores (r = 0.30, P < 0.05). Multiple regression analysis including limbic (hippocampal and amygdala) and neocortical acetylcholinesterase activity as well as striatal monoaminergic activity, using odour identification scores as the dependent variable, demonstrated a significant regressor effect for limbic acetylcholinesterase activity (F = 10.1, P < 0.0001), borderline for striatal monoaminergic activity (F = 1.6, P = 0.13), but not significant for cortical acetylcholinesterase activity (F = 0.3, P = 0.75). Odour identification scores correlated positively with scores on cognitive measures of episodic verbal learning (r = 0.30, P < 0.05). These findings indicate that cholinergic denervation of the limbic archicortex is a more robust determinant of hyposmia than nigrostriatal dopaminergic denervation in subjects with moderately severe Parkinson's disease. Greater deficits in odour identification may identify patients with Parkinson's disease at risk for clinically significant cognitive impairment

    Mapping the evolution of regional atrophy in Alzheimer's disease: Unbiased analysis of fluid-registered serial MRI

    No full text
    Alzheimer's disease (AD) is characterized by progressive cerebral atrophy, which may be assessed by using volumetric MRI. We describe a voxel-based analysis of nonlinear-registered serial MRI to demonstrate the most statistically significant (P < 0.001) regions of change at different stages of the disease. We compared presymptomatic (n = 4), mild (n = 10), and moderately affected (n = 12) patients with early- and late-onset AD, with age- and sex-matched controls, and demonstrated increasing global atrophy with advancing disease. Significantly increased rates of hippocampal atrophy were seen in presymptomatic and mildly affected patients. There was a shift in the distribution of temporal lobe atrophy with advancing disease; the inferolateral regions of the temporal lobes showed the most significantly increased rates of atrophy by the time the patients were mildly or moderately affected. Significantly increased rates of medial parietal lobe atrophy were seen at all stages, with frontal lobe involvement occurring later in the disease. Our results suggest that the sites showing the most significant rates of atrophy alter as the disease advances, and that regional atrophy is already occurring before the onset of symptoms. This technique provides insights into the natural history of AD, and may be a valuable tool in assessing the efficacy of disease-modifying treatments, especially if these treatments were to have region-specific effects
    corecore