16 research outputs found

    A communal catalogue reveals Earth's multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.Peer reviewe

    A communal catalogue reveals Earth’s multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity

    Type 1 angiotensin receptors on macrophages ameliorate IL-1 receptor–mediated kidney fibrosis

    No full text
    In a wide array of kidney diseases, type 1 angiotensin (AT1) receptors are present on the immune cells that infiltrate the renal interstitium. Here, we examined the actions of AT1 receptors on macrophages in progressive renal fibrosis and found that macrophage-specific AT1 receptor deficiency exacerbates kidney fibrosis induced by unilateral ureteral obstruction (UUO). Macrophages isolated from obstructed kidneys of mice lacking AT1 receptors solely on macrophages had heightened expression of proinflammatory M1 cytokines, including IL-1. Evaluation of isolated AT1 receptor–deficient macrophages confirmed the propensity of these cells to produce exaggerated levels of M1 cytokines, which led to more severe renal epithelial cell damage via IL-1 receptor activation in coculture compared with WT macrophages. A murine kidney crosstransplantation concomitant with UUO model revealed that augmentation of renal fibrosis instigated by AT1 receptor–deficient macrophages is mediated by IL-1 receptor stimulation in the kidney. This study indicates that a key role of AT1 receptors on macrophages is to protect the kidney from fibrosis by limiting activation of IL-1 receptors in the kidney
    corecore