9 research outputs found

    Application of phasor measurement units for monitoring power system dynamic performance

    Get PDF
    This Working Group is a sequel to a previous working group on Wide Area Monitoring and Control for Transmission Capability Enhancement, which published the Technical Brochure 330 in 2007. Since then the synchrophasor technology has advanced rapidly and many utilities around the world have installed hundreds of PMUs in their networks. In this Technical Brochure, we look at the current state of the technology and the extent to which it has been used in the industry. As the technology has matured, it is also important to understand the communication protocols used in synchrophasor networks and their relevant cyber-security issues. These concerns are briefly discussed in the brochure. The applications of Phasor Measurement Units (PMU) measurements reported here are divided into three categories: (a) applications already installed in utility networks, (b) applications that are well-tested, but not yet installed, and (c) applications that are beneficial to the industry, but not fully developed yet. The most common and mature applications are wide area monitoring, state estimation, and model validation. Out of these three applications, wide area monitoring is well established in the industry. The protection and control applications are emerging as evident from the reported examples. The experience of using remote synchrophasor measurements as feedback control signals is not widely reported by the industry. In parallel to this Working Group, Study Committee B5 had a Working Group on “Wide area protection and control technologies.” The Technical Brochure 664 published by this Working Group in September 2016 reviews synchrophasor technology and discusses the industry experience with wide area protection and control. The North American synchrophasor Initiative (NASPI) is another technical group that has gathered and reported a wide range of PMU experiences of industry and researchers. In summary, the field-tested applications presented in this Technical Brochure are a testimony to the confidence of utilities in the synchrophasor technology. The progress in state estimation techniques indicates that synchrophasor measurements will become a standard part of energy management and security assessment systems in the near future

    PMU-based Voltage Instability Detection through Linear Regression

    Full text link
    Timely recognition of voltage instability is crucial to allow for effective control and protection interventions. Phasor measurements units (PMUs) can be utilized to provide high sampling rate time-synchronized voltage and current phasors suitable for wide-area voltage instability detection. However, PMU data contains unwanted measurement errors and noise, which may affect the results of applications using these measurements for voltage instability detection. The aim of this article is to revisit a sensitivities calculation to detect voltage instability by applying a method utilizing linear regression for preprocessing PMU data. The methodology is validated using both real-time hardware-in-the-loop simulation and real PMU measurements from Norwegian network.Comment: This paper has been withdrawn by the author due to a crucial sign error in equation

    Virtualization of Synchronized Phasor Measurement Units within Real-Time Simulators for Smart Grid Applications

    No full text
    Abstract-Synchronized phasor measurement units (PMUs) provide GPS-time tagged high-sampling rate positive-sequence voltage and current phasors. When placed in high-voltage substations in power networks, PMUs can provide real-time information that is necessary for the development of Smart Transmission Grid software applications for improving power system monitoring, control and protection. The development of these applications, particularly for use within control centers for on-line purposes, is limited by the availability of and access to real-time PMU data and other information. One attractive approach for application development is the use of real-time simulators to which PMUs can be interfaced as hardware-in-the-loop (HIL) devices to harvest PMU data. However, this approach has technical and economical limitations, which can be tackled by the virtualization of PMU devices. This article describes the development of an entirely software-based synchronized phasor measurement unit for use within real-time simulators that will allow the emulation of a large number of real-life PMUs, which in turn can be used for creating new phasor-based applications

    Vegetable oils as carbon and energy source for Aureobasidium melanogenum in batch cultivation

    Get PDF
    Dark homogenous fungal-based layers called biofinishes and vegetable oils are key ingredients of an innovative wood protecting system. The aim of this study was to determine which of the vegetable oils that have been used to generate biofinishes on wood will provide carbon and energy for the biofinish-inhabiting fungus Aureobasidium melanogenum, and to determine the effect of the oil type and the amount of oil on the cell yield. Aureobasidium melanogenum was cultivated in shake flasks with different types and amounts of carbon-based nutrients. Oil-related total cell and colony-forming unit growth were demonstrated in suspensions with initially 1% raw linseed, stand linseed, and olive oil. Oil-related cell growth was also demonstrated with raw linseed oil, using an initial amount of 0.02% and an oil addition during cultivation. Nile red staining showed the accumulation of fatty acids inside cells grown in the presence of oil. In conclusion, each tested vegetable oil was used as carbon and energy source by A. melanogenum. The results indicated that stand linseed oil provides less carbon and energy than olive and raw linseed oil. This research is a fundamental step in unraveling the effects of vegetable oils on biofinish formation

    A survey on intelligent system application to fault diagnosis in electric power system transmission lines

    No full text
    corecore