244 research outputs found

    Alcohol Abstinence Does Not Fully Reverse Abnormalities of Mucosal-Associated Invariant T Cells in the Blood of Patients With Alcoholic Hepatitis

    Get PDF
    OBJECTIVES: Alcoholic hepatitis (AH) develops in approximately 30% of chronic heavy drinkers. The immune system of patients with AH is hyperactivated, yet ineffective against infectious diseases. Mucosal-associated invariant T (MAIT) cells are innate-like lymphocytes that are highly enriched in liver, mucosa, and peripheral blood and contribute to antimicrobial immunity. We aimed to determine whether MAIT cells were dysregulated in heavy drinkers with and without AH and the effects of alcohol abstinence on MAIT cell recovery. METHODS: MR1 tetramers loaded with a potent MAIT cell ligand 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil were used in multiparameter flow cytometry to analyze peripheral blood MAIT cells in 59 healthy controls (HC), 56 patients with AH, and 45 heavy drinkers without overt liver disease (HDC) at baseline and 6- and 12-month follow-ups. Multiplex immunoassays were used to quantify plasma levels of cytokines related to MAIT cell activation. Kinetic Turbidimetric Limulus Amebocyte Lysate Assay and ELISA were performed to measure circulating levels of 2 surrogate markers for bacterial translocation (lipopolysaccharide and CD14), respectively. RESULTS: At baseline, patients with AH had a significantly lower frequency of MAIT cells than HDC and HC. HDC also had less MAIT cells than HC (median 0.16% in AH, 0.56% in HDC, and 1.25% in HC). Further, the residual MAIT cells in patients with AH expressed higher levels of activation markers (CD69, CD38, and human leukocyte antigen [HLA]-DR), the effector molecule granzyme B, and the immune exhaustion molecule PD-1. Plasma levels of lipopolysaccharide and CD14 and several cytokines related to MAIT cell activation were elevated in patients with AH (interferon [IFN]-α, interleukin [IL]-7, IL-15, IL-17, IL-18, IL-23, IFN-γ, and tumor necrosis factor α). Decreased MAIT cell frequency and upregulated CD38, CD69, and HLA-DR correlated negatively and positively, respectively, with aspartate aminotransferase level. MAIT cell frequency negatively correlated with IL-18. HLA-DR and CD38 levels correlated with several cytokines. At follow-ups, abstinent patients with AH had increased MAIT cell frequency and decreased MAIT cell activation. However, MAIT cell frequency was not fully normalized in patients with AH (median 0.31%). DISCUSSION: We showed that HDC had a reduction of blood MAIT cells despite showing little evidence of immune activation, whereas patients with AH had a severe depletion of blood MAIT cells and the residual cells were highly activated. Alcohol abstinence partially reversed those abnormalities

    Decreased NK Cell FcRγ in HIV-1 Infected Individuals Receiving Combination Antiretroviral Therapy: a Cross Sectional Study

    Get PDF
    Background: FcRc is an immunoreceptor tyrosine-based activation motif (ITAM)-signalling protein essential for immunoreceptor signaling and monocyte, macrophage and NK cell function. Previous study from our laboratory showed that FcRc is down-regulated in HIV-infected macrophages in vitro. FcRc expression in immune cells present in HIV-infected individuals is unknown. Methodology/Principal Findings: We compared FcRc expression in peripheral blood mononuclear cells isolated from HIV-1-infected individuals receiving combination antiretroviral therapy and healthy, HIV-1-uninfected individuals. FcRc mRNA and protein levels were measured using quantitative real-time PCR and immunoblotting, respectively. CD56 + CD94 + lymphocytes isolated from blood of HIV-1 infected individuals had reduced FcRc protein expression compared to HIVuninfected individuals (decrease = 76.8%, n = 18 and n = 12 respectively, p = 0.0036). In a second group of patients, highly purified NK cells had reduced FcRc protein expression compared to uninfected controls (decrease = 50.2%, n = 9 and n = 8 respectively, p = 0.021). Decreased FcRc expression in CD56+CD94+ lymphocytes was associated with reduced mRNA (51.7%, p = 0.021) but this was not observed for the smaller group of patients analysed for NK cell expression (p = 0.36). Conclusion/Significance: These data suggest biochemical defects in ITAM-dependent signalling within NK cells in HIVinfecte

    Mucosal-associated invariant and γδ T cell subsets respond to initial Mycobacterium tuberculosis infection

    Get PDF
    Innate immune responses that control early Mtb infection are poorly understood, but understanding these responses may inform vaccination and immunotherapy strategies. Innate T cells that respond to conserved bacterial ligands such as mucosal-associated invariant T (MAIT) and γδ T cells are prime candidates to mediate these early innate responses but have not been examined in subjects who have been recently exposed to Mtb. We recruited a cohort living in the same household with an active tuberculosis (TB) case and examined the abundance and functional phenotypes of 3 innate T cell populations reactive to M. tuberculosis: γδ T, invariant NK T (iNKT), and MAIT cells. Both MAIT and γδ T cells from subjects with Mtb exposure display ex vivo phenotypes consistent with recent activation. However, both MAIT and γδ T cell subsets have distinct response profiles, with CD4+ MAIT and γδ T cells accumulating after infection. Examination of exposed but uninfected contacts demonstrates that resistance to initial infection is accompanied by robust MAIT cell CD25 expression and granzyme B production coupled with a depressed CD69 and IFNγ response. Finally, we demonstrate that MAIT cell abundance and function correlate with the abundance of specific gut microbes, suggesting that responses to initial infection may be modulated by the intestinal microbiome

    Dynamics of CD4 and CD8 T-Cell Subsets and Inflammatory Biomarkers during Early and Chronic HIV Infection in Mozambican Adults

    Get PDF
    During primary HIV infection (PHI), there is a striking cascade response of inflammatory cytokines and many cells of the immune system show altered frequencies and signs of extensive activation. These changes have been shown to have a relevant role in predicting disease progression; however, the challenges of identifying PHI have resulted in a lack of critical information about the dynamics of early pathogenic events. We studied soluble inflammatory biomarkers and changes in T-cell subsets in individuals at PHI (n = 40), chronic HIV infection (CHI, n = 56), and HIV-uninfected (n = 58) recruited at the Manhica District Hospital in Mozambique. Plasma levels of 49 biomarkers were determined by Luminex and ELISA. T-cell immunophenotyping was performed by multicolor flow cytometry. Plasma HIV viremia, CD4, and CD8 T cell counts underwent rapid stabilization after PHI. However, several immunological parameters, including Th1-Th17 CD4 T cells and activation or exhaustion of CD8 T cells continued decreasing until more than 9 months postinfection. Importantly, no sign of immunosenescence was observed over the first year of HIV infection. Levels of IP-10, MCP-1, BAFF, sCD14, tumor necrosis factor receptor-2, and TRAIL were significantly overexpressed at the first month of infection and underwent a prompt decrease in the subsequent months while, MIG and CD27 levels began to increase 1 month after infection and remained overexpressed for almost 1 year postinfection. Early levels of soluble biomarkers were significantly associated with subsequently exhausted CD4 T-cells or with CD8 T-cell activation. Despite rapid immune control of virus replication, the stabilization of the T-cell subsets occurs months after viremia and CD4 count plateau, suggesting persistent immune dysfunction and highlighting the potential benefit of early treatment initiation that could limit immunological damage

    Recognition of vitamin B metabolites by mucosal-associated invariant T cells

    Get PDF
    The mucosal-associated invariant T-cell antigen receptor (MAIT TCR) recognizes MR1 presenting vitamin B metabolites. Here we describe the structures of a human MAIT TCR in complex with human MR1 presenting a non-stimulatory ligand derived from folic acid and an agonist ligand derived from a riboflavin metabolite. For both vitamin B antigens, the MAIT TCR docks in a conserved manner above MR1, thus acting as an innate-like pattern recognition receptor. The invariant MAIT TCR a-chain usage is attributable to MR1-mediated interactions that prise open the MR1 cleft to allow contact with the vitamin B metabolite. Although the non-stimulatory antigen does not contact the MAIT TCR, the stimulatory antigen does. This results in a higher affinity of the MAIT TCR for a stimulatory antigen in comparison with a non-stimulatory antigen. We formally demonstrate a structural basis for MAIT TCR recognition of vitamin B metabolites, while illuminating how TCRs recognize microbial metabolic signatures

    IP-10 Levels as an Accurate Screening Tool to Detect Acute HIV Infection in Resource-Limited Settings.

    Get PDF
    Acute HIV infection (AHI) is the period prior to seroconversion characterized by high viral replication, hyper-transmission potential and commonly, non-specific febrile illness. AHI detection requires HIV-RNA viral load (VL) determination, which has very limited access in low-income countries due to restrictive costs and implementation constraints. We sought to identify a biomarker that could enable AHI diagnosis in scarce-resource settings, and to evaluate the feasibility of its implementation. HIV-seronegative adults presenting at the Manhiça District Hospital, Mozambique, with reported-fever were tested for VL. Plasma levels of 49 inflammatory biomarkers from AHI (n = 61) and non-HIV infected outpatients (n = 65) were determined by Luminex and ELISA. IP-10 demonstrated the best predictive power for AHI detection (AUC = 0.88 [95%CI 0.80-0.96]). A cut-off value of IP-10 ≥ 161.6 pg/mL provided a sensitivity of 95.5% (95%CI 85.5-99.5) and a specificity of 76.5% (95%CI 62.5-87.2). The implementation of an IP-10 screening test could avert from 21 to 84 new infections and save from US176,609toUS176,609 to US533,467 to the health system per 1,000 tested patients. We conclude that IP-10 is an accurate biomarker to screen febrile HIV-seronegative individuals for subsequent AHI diagnosis with VL. Such an algorithm is a cost-effective strategy to prevent disease progression and a substantial number of further HIV infections

    MAIT cells launch a rapid, robust and distinct hyperinflammatory response to bacterial superantigens and quickly acquire an anergic phenotype that impedes their cognate antimicrobial function: Defining a novel mechanism of superantigen-induced immunopathology and immunosuppression

    Get PDF
    Superantigens (SAgs) are potent exotoxins secreted by Staphylococcus aureus and Streptococcus pyogenes. They target a large fraction of T cell pools to set in motion a "cytokine storm" with severe and sometimes life-threatening consequences typically encountered in toxic shock syndrome (TSS). Given the rapidity with which TSS develops, designing timely and truly targeted therapies for this syndrome requires identification of key mediators of the cytokine storm's initial wave. Equally important, early host responses to SAgs can be accompanied or followed by a state of immunosuppression, which in turn jeopardizes the host's ability to combat and clear infections. Unlike in mouse models, the mechanisms underlying SAg-associated immunosuppression in humans are ill-defined. In this work, we have identified a population of innate-like T cells, called mucosa-associated invariant T (MAIT) cells, as the most powerful source of pro-inflammatory cytokines after exposure to SAgs. We have utilized primary human peripheral blood and hepatic mononuclear cells, mouse MAIT hybridoma lines, HLA-DR4-transgenic mice, MAIThighHLA-DR4+ bone marrow chimeras, and humanized NOD-scid IL-2Rγnull mice to demonstrate for the first time that: i) mouse and human MAIT cells are hyperresponsive to SAgs, typified by staphylococcal enterotoxin B (SEB); ii) the human MAIT cell response to SEB is rapid and far greater in magnitude than that launched by unfractionated conventional T, invariant natural killer T (iNKT) or γδ T cells, and is characterized by production of interferon (IFN)-γ, tumor necrosis factor (TNF)-α and interleukin (IL)-2, but not IL-17A; iii) high-affinity MHC class II interaction with SAgs, but not MHC-related protein 1 (MR1) participation, is required for MAIT cell activation; iv) MAIT cell responses to SEB can occur in a T cell receptor (TCR) Vβ-specific manner but are largely contributed by IL-12 and IL-18; v) as MAIT cells are primed by SAgs, they also begin to develop a molecular signature consistent with exhaustion and failure to participate in antimicrobial defense. Accordingly, they upregulate lymphocyte-activation gene 3 (LAG-3), T cell immunoglobulin and mucin-3 (TIM-3), and/or programmed cell death-1 (PD-1), and acquire an anergic phenotype that interferes with their cognate function against Klebsiella pneumoniae and Escherichia coli; vi) MAIT cell hyperactivation and anergy co-utilize a signaling pathway that is governed by p38 and MEK1/2. Collectively, our findings demonstrate a pathogenic, rather than protective, role for MAIT cells during infection. Furthermore, we propose a novel mechanism of SAg-associated immunosuppression in humans. MAIT cells may therefore provide an attractive therapeutic target for the management of both early and late phases of severe SAg-mediated illnesses
    corecore