6 research outputs found

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    Conserved Role of unc-79 in Ethanol Responses in Lightweight Mutant Mice

    Get PDF
    The mechanisms by which ethanol and inhaled anesthetics influence the nervous system are poorly understood. Here we describe the positional cloning and characterization of a new mouse mutation isolated in an N-ethyl-N-nitrosourea (ENU) forward mutagenesis screen for animals with enhanced locomotor activity. This allele, Lightweight (Lwt), disrupts the homolog of the Caenorhabditis elegans (C. elegans) unc-79 gene. While Lwt/Lwt homozygotes are perinatal lethal, Lightweight heterozygotes are dramatically hypersensitive to acute ethanol exposure. Experiments in C. elegans demonstrate a conserved hypersensitivity to ethanol in unc-79 mutants and extend this observation to the related unc-80 mutant and nca-1;nca-2 double mutants. Lightweight heterozygotes also exhibit an altered response to the anesthetic isoflurane, reminiscent of unc-79 invertebrate mutant phenotypes. Consistent with our initial mapping results, Lightweight heterozygotes are mildly hyperactive when exposed to a novel environment and are smaller than wild-type animals. In addition, Lightweight heterozygotes exhibit increased food consumption yet have a leaner body composition. Interestingly, Lightweight heterozygotes voluntarily consume more ethanol than wild-type littermates. The acute hypersensitivity to and increased voluntary consumption of ethanol observed in Lightweight heterozygous mice in combination with the observed hypersensitivity to ethanol in C. elegans unc-79, unc-80, and nca-1;nca-2 double mutants suggests a novel conserved pathway that might influence alcohol-related behaviors in humans

    Improved reference genome of Aedes aegypti informs arbovirus vector control

    Get PDF
    Female Aedes aegypti mosquitoes infect more than 400 million people each year with dangerous viral pathogens including dengue, yellow fever, Zika and chikungunya. Progress in understanding the biology of mosquitoes and developing the tools to fight them has been slowed by the lack of a high-quality genome assembly. Here we combine diverse technologies to produce the markedly improved, fully re-annotated AaegL5 genome assembly, and demonstrate how it accelerates mosquito science. We anchored physical and cytogenetic maps, doubled the number of known chemosensory ionotropic receptors that guide mosquitoes to human hosts and egg-laying sites, provided further insight into the size and composition of the sex-determining M locus, and revealed copy-number variation among glutathione S-transferase genes that are important for insecticide resistance. Using high-resolution quantitative trait locus and population genomic analyses, we mapped new candidates for dengue vector competence and insecticide resistance. AaegL5 will catalyse new biological insights and intervention strategies to fight this deadly disease vector

    BQ323636.1, a Novel Splice Variant to NCOR2, as a Predictor for Tamoxifen-Resistant Breast Cancer.

    Get PDF
    Purpose: Adjuvant tamoxifen treatment revolutionized the management of estrogen receptor (ER)-positive breast cancers to prevent cancer recurrence; however, drug resistance compromises its clinical efficacy. The mechanisms underlying tamoxifen resistance are not fully understood, and no robust biomarker is available to reliably predict those who will be resistant. Here, we study BQ323636.1, a novel splice variant of the NCOR2 gene, and evaluate its efficacy in predicting tamoxifen resistance in patients with breast cancer.Experimental Design: A monoclonal anti-BQ323636.1 antibody that specifically recognizes the unique epitope of this splice variant was generated for in vitro mechanistic studies and for in vivo analysis by immunohistochemistry on tissue microarrays of two independent cohorts of 358 patients with more than 10 years clinical follow-up data, who had ER-positive primary breast cancer and received adjuvant tamoxifen treatment. An orthotopic mouse model was also used.Results: Overexpression of BQ323636.1 conferred resistance to tamoxifen in both in vitro and in an orthotopic mouse model. Mechanistically, coimmunoprecipitation showed BQ323636.1 could bind to NCOR2 and inhibit the formation of corepressor complex for the suppression of ER signaling. Nuclear BQ3232636.1 overexpression in patients samples was significantly associated with tamoxifen resistance (P = 1.79 × 10-6, sensitivity 52.9%, specificity 72.0%). In tamoxifen-treated patients, nuclear BQ323636.1 overexpression was significantly correlated with cancer metastasis and disease relapse. Nuclear BQ323636.1 was also significantly associated with poorer overall survival (P = 1.13 × 10-4) and disease-specific survival (P = 4.02 × 10-5).Conclusions: These findings demonstrate that BQ323636.1 can be a reliable biomarker to predict tamoxifen resistance in patients with ER-positive breast cancer. Clin Cancer Res; 24(15); 3681-91. ©2018 AACRSee related commentary by Jordan, p. 3480
    corecore