609 research outputs found

    Diffusion constant of supercharge density in N=4 SYM at finite chemical potential

    Get PDF
    We compute holographically the diffusion constant of supercharges in N=4 SYM at finite chemical potential for the R-charge, by solving the equations of motion for the transverse mode of the gravitino in the STU black hole in 5 dimensions. We consider the case of one charge and three charges, and we present analytical solutions for small values of the charges and numerical solutions for arbitrary values. We compare our results with other known results in 4 dimensions.Comment: 20 pages, 4 figures; v2: typos correcte

    Charge Fractionalization in nonchiral Luttinger systems

    Get PDF
    One-dimensional metals, such as quantum wires or carbon nanotubes, can carry charge in arbitrary units, smaller or larger than a single electron charge. However, according to Luttinger theory, which describes the low-energy excitations of such systems, when a single electron is injected by tunneling into the middle of such a wire, it will tend to break up into separate charge pulses, moving in opposite directions, which carry definite fractions ff and (1−f)(1-f) of the electron charge, determined by a parameter gg that measures the strength of charge interactions in the wire. (The injected electron will also produce a spin excitation, which will travel at a different velocity than the charge excitations.) Observing charge fractionalization physics in an experiment is a challenge in those (nonchiral) low-dimensional systems which are adiabatically coupled to Fermi liquid leads. We theoretically discuss a first important step towards the observation of charge fractionalization in quantum wires based on momentum-resolved tunneling and multi-terminal geometries, and explain the recent experimental results of H. Steinberg {\it et al.}, Nature Physics {\bf 4}, 116 (2008).Comment: 31 pages, final version to appear in Annals of Physic

    Six-dimensional supersymmetric gauge theories, quantum cohomology of instanton moduli spaces and gl(N) Quantum Intermediate Long Wave Hydrodynamics

    Get PDF
    We show that the exact partition function of U(N) six-dimensional gauge theory with eight supercharges on \u21022 7 S 2 provides the quantization of the integrable system of hydrodynamic type known as gl(N) periodic Intermediate Long Wave (ILW). We characterize this system as the hydrodynamic limit of elliptic Calogero-Moser integrable system. We compute the Bethe equations from the effective gauged linear sigma model on S 2 with target space the ADHM instanton moduli space, whose mirror computes the Yang-Yang function of gl(N) ILW. The quantum Hamiltonians are given by the local chiral ring observables of the six-dimensional gauge theory. As particular cases, these provide the gl(N) Benjamin-Ono and Korteweg-de Vries quantum Hamiltonians. In the four dimensional limit, we identify the local chiral ring observables with the conserved charges of Heisenberg plus W N algebrae, thus providing a gauge theoretical proof of AGT correspondence. \ua9 2014 The Author(s)

    Nanoscale characterization of electrical transport at metal/3C-SiC interfaces

    Get PDF
    In this work, the transport properties of metal/3C-SiC interfaces were monitored employing a nanoscale characterization approach in combination with conventional electrical measurements. In particular, using conductive atomic force microscopy allowed demonstrating that the stacking fault is the most pervasive, electrically active extended defect at 3C-SiC(111) surfaces, and it can be electrically passivated by an ultraviolet irradiation treatment. For the Au/3C-SiC Schottky interface, a contact area dependence of the Schottky barrier height (ΊB) was found even after this passivation, indicating that there are still some electrically active defects at the interface. Improved electrical properties were observed in the case of the Pt/3C-SiC system. In this case, annealing at 500°C resulted in a reduction of the leakage current and an increase of the Schottky barrier height (from 0.77 to 1.12 eV). A structural analysis of the reaction zone carried out by transmission electron microscopy [TEM] and X-ray diffraction showed that the improved electrical properties can be attributed to a consumption of the surface layer of SiC due to silicide (Pt2Si) formation. The degradation of Schottky characteristics at higher temperatures (up to 900°C) could be ascribed to the out-diffusion and aggregation of carbon into clusters, observed by TEM analysis

    Production of phi mesons at mid-rapidity in sqrt(s_NN) = 200 GeV Au+Au collisions at RHIC

    Get PDF
    We present the first results of meson production in the K^+K^- decay channel from Au+Au collisions at sqrt(s_NN) = 200 GeV as measured at mid-rapidity by the PHENIX detector at RHIC. Precision resonance centroid and width values are extracted as a function of collision centrality. No significant variation from the PDG accepted values is observed. The transverse mass spectra are fitted with a linear exponential function for which the derived inverse slope parameter is seen to be constant as a function of centrality. These data are also fitted by a hydrodynamic model with the result that the freeze-out temperature and the expansion velocity values are consistent with the values previously derived from fitting single hadron inclusive data. As a function of transverse momentum the collisions scaled peripheral.to.central yield ratio RCP for the is comparable to that of pions rather than that of protons. This result lends support to theoretical models which distinguish between baryons and mesons instead of particle mass for explaining the anomalous proton yield.Comment: 326 authors, 24 pages text, 23 figures, 6 tables, RevTeX 4. To be submitted to Physical Review C as a regular article. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Azimuthal anisotropy and correlations at large transverse momenta in p+pp+p and Au+Au collisions at sNN\sqrt{s_{_{NN}}}= 200 GeV

    Get PDF
    Results on high transverse momentum charged particle emission with respect to the reaction plane are presented for Au+Au collisions at sNN\sqrt{s_{_{NN}}}= 200 GeV. Two- and four-particle correlations results are presented as well as a comparison of azimuthal correlations in Au+Au collisions to those in p+pp+p at the same energy. Elliptic anisotropy, v2v_2, is found to reach its maximum at pt∌3p_t \sim 3 GeV/c, then decrease slowly and remain significant up to pt≈7p_t\approx 7 -- 10 GeV/c. Stronger suppression is found in the back-to-back high-ptp_t particle correlations for particles emitted out-of-plane compared to those emitted in-plane. The centrality dependence of v2v_2 at intermediate ptp_t is compared to simple models based on jet quenching.Comment: 4 figures. Published version as PRL 93, 252301 (2004

    Azimuthal anisotropy in Au+Au collisions at sqrtsNN = 200 GeV

    Get PDF
    The results from the STAR Collaboration on directed flow (v_1), elliptic flow (v_2), and the fourth harmonic (v_4) in the anisotropic azimuthal distribution of particles from Au+Au collisions at sqrtsNN = 200 GeV are summarized and compared with results from other experiments and theoretical models. Results for identified particles are presented and fit with a Blast Wave model. Different anisotropic flow analysis methods are compared and nonflow effects are extracted from the data. For v_2, scaling with the number of constituent quarks and parton coalescence is discussed. For v_4, scaling with v_2^2 and quark coalescence is discussed.Comment: 26 pages. As accepted by Phys. Rev. C. Text rearranged, figures modified, but data the same. However, in Fig. 35 the hydro calculations are corrected in this version. The data tables are available at http://www.star.bnl.gov/central/publications/ by searching for "flow" and then this pape

    Rapidity and Centrality Dependence of Proton and Anti-proton Production from Au+Au Collisions at sqrt(sNN) = 130GeV

    Full text link
    We report on the rapidity and centrality dependence of proton and anti-proton transverse mass distributions from Au+Au collisions at sqrt(sNN) = 130GeV as measured by the STAR experiment at RHIC. Our results are from the rapidity and transverse momentum range of |y|<0.5 and 0.35 <p_t<1.00GeV/c. For both protons and anti-protons, transverse mass distributions become more convex from peripheral to central collisions demonstrating characteristics of collective expansion. The measured rapidity distributions and the mean transverse momenta versus rapidity are flat within |y|<0.5. Comparisons of our data with results from model calculations indicate that in order to obtain a consistent picture of the proton(anti-proton) yields and transverse mass distributions the possibility of pre-hadronic collective expansion may have to be taken into account.Comment: 4 pages, 3 figures, 1 table, submitted to PR

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal
    • 

    corecore