172 research outputs found
Heritability and genetic constraints of life-history trait evolution in preindustrial humans.
An increasing number of studies have documented phenotypic selection on life-history traits in human populations, but less is known of the heritability and genetic constraints that mediate the response to selection on life-history traits in humans. We collected pedigree data for four generations of preindustrial (1745–1900) Finns who lived in premodern fertility and mortality conditions, and by using a restricted maximum-likelihood animal-model framework, we estimated the heritability of and genetic correlations between a suite of life-history traits and two alternative measures of fitness. First, we demonstrate high heritability of key life-history traits (fecundity, interbirth interval, age at last reproduction, and adult longevity) and measures of fitness (individual λ and lifetime reproductive success) for females but not for males. This sex difference may have arisen because most of the measured traits are under physiological control of the female, such that a male's fitness in monogamous societies may depend mainly on the reproductive quality of his spouse. We found strong positive genetic correlations between female age at first reproduction and longevity, and between interbirth intervals and longevity, suggesting reduced life spans in females who either started to breed relatively early or who then bred frequently. Our results suggest that key female life-history traits in this premodern human population had high heritability and may have responded to natural selection. However genetic constraints between longevity and reproductive life-history traits may have constrained the evolution of life history and facilitated the maintenance of additive genetic variance in key life-history traits.</p
Environmental and Parental Influences on Offspring Health and Growth in Great Tits (Parus major)
PMCID: PMC3728352This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Natural genetic variation in fluctuating asymmetry of wing shape in Drosophila melanogaster
Fluctuating asymmetry (FA), defined as random deviation from perfect symmetry, has been used to assay the inability of individuals to buffer their developmental processes from environmental perturbations (i.e., developmental instability). In this study, we aimed to characterize the natural genetic variation in FA of wing shape in Drosophila melanogaster, collected from across the Japanese archipelago. We quantified wing shapes at whole wing and partial wing component levels and evaluated their mean and FA. We also estimated the heritability of the mean and FA of these traits. We found significant natural genetic variation in all the mean wing traits and in FA of one of the partial wing components. Heritability estimates for mean wing shapes were significant in two and four out of five wing traits in males and females, respectively. On the contrary, heritability estimates for FA were low and not significant. This is a novel study of natural genetic variation in FA of wing shape. Our findings suggest that partial wing components behave as distinct units of selection for FA, and local adaptation of the mechanisms to stabilize developmental processes occur in nature
Stressful conditions reveal decrease in size, modification of shape but relatively stable asymmetry in bumblebee wings
Human activities can generate a wide variety of direct and indirect effects on animals, which can manifest as environmental and genetic stressors. Several phenotypic markers have been proposed as indicators of these stressful conditions but have displayed contrasting results, depending, among others, on the phenotypic trait measured. Knowing the worldwide decline of multiple bumblebee species, it is important to understand these stressors and link them with the drivers of decline. We assessed the impact of several stressors (i.e. natural toxin-, parasite-, thermic- and inbreeding-stress) on both wing shape and size and their variability as well as their directional and fluctuating asymmetries. The total data set includes 650 individuals of Bombus terrestris (Hymenoptera: Apidae). Overall wing size and shape were affected by all the tested stressors. Except for the sinigrin (e.g. glucosinolate) stress, each stress implies a decrease of wing size. Size variance was affected by several stressors, contrary to shape variance that was affected by none of them. Although wing size directional and fluctuating asymmetries were significantly affected by sinigrin, parasites and high temperatures, neither directional nor fluctuating shape asymmetry was significantly affected by any tested stressor. Parasites and high temperatures led to the strongest phenotype modifications. Overall size and shape were the most sensitive morphological traits, which contrasts with the common view that fluctuating asymmetry is the major phenotypic marker of stress
The Effect of Climate Fluctuation on Chimpanzee Birth Sex Ratio
Climate and weather conditions, such as the North Atlantic Oscillation, precipitation and temperature influence the birth sex ratio (BSR) of various higher latitude species, including deer, elephant seals or northern human populations. Although, tropical regions show only little variation in temperature, climate and weather conditions can fluctuate with consequences for phenology and food resource availability. Here, we evaluate, whether the BSR of chimpanzees, inhabiting African tropical forests, is affected by climate fluctuations as well. Additionally, we evaluate, if variation in consumption of a key food resource with high nutritional value, Coula edulis nuts, is linked to both climate fluctuations and variation in BSR. We use long-term data from two study groups located in Taï National Park, Côte d'Ivoire to assess the influence of local weather conditions and the global climate driver El Niño Southern Oscillation (ENSO) on offspring sex. Côte d'Ivoire has experienced considerable climate variation over the last decades, with increasing temperature and declining precipitation. For both groups we find very similar time windows around the month of conception, in which offspring sex is well predicted by ENSO, with more males following low ENSO values, corresponding to periods of high rainfall. Furthermore, we find that the time spent cracking and feeding on Coula nuts is strongly influenced by climate conditions. Although, some of our analysis suggest that a higher proportion of males is born after periods with higher nut consumption frequency, we cannot conclude decisively at this point that nut consumption may influence shifts in BSR. All results combined suggest that also chimpanzees may experience climate related shifts in offspring sex ratios as response to climate fluctuation
Early Fasting Is Long Lasting: Differences in Early Nutritional Conditions Reappear under Stressful Conditions in Adult Female Zebra Finches
Conditions experienced during early life can have profound effects on individual development and condition in adulthood. Differences in nutritional provisioning in birds during the first month of life can lead to differences in growth, reproductive success and survival. Yet, under natural conditions shorter periods of nutritional stress will be more prevalent. Individuals may respond differently, depending on the period of development during which nutritional stress was experienced. Such differences may surface specifically when poor environmental conditions challenge individuals again as adults. Here, we investigated long term consequences of differences in nutritional conditions experienced during different periods of early development by female zebra finches (Taeniopygia guttata) on measures of management and acquisition of body reserves. As nestlings or fledglings, subjects were raised under different nutritional conditions, a low or high quality diet. After subjects reached sexual maturity, we measured their sensitivity to periods of food restriction, their exploration and foraging behaviour as well as adult resting metabolic rate (RMR). During a short period of food restriction, subjects from the poor nutritional conditions had a higher body mass loss than those raised under qualitatively superior nutritional conditions. Moreover, subjects that were raised under poor nutritional conditions were faster to engage in exploratory and foraging behaviour. But RMR did not differ among treatments. These results reveal that early nutritional conditions affect adult exploratory behaviour, a representative personality trait, foraging and adult's physiological condition. As early nutritional conditions are reflected in adult phenotypic plasticity specifically when stressful situations reappear, the results suggest that costs for poor developmental conditions are paid when environmental conditions deteriorate
Krill Excretion Boosts Microbial Activity in the Southern Ocean
Antarctic krill are known to release large amounts of inorganic and organic nutrients to the water column. Here we test the role of krill excretion of dissolved products in stimulating heterotrophic bacteria on the basis of three experiments where ammonium and organic excretory products released by krill were added to bacterial assemblages, free of grazers. Our results demonstrate that the addition of krill excretion products (but not of ammonium alone), at levels expected in krill swarms, greatly stimulates bacteria resulting in an order-of-magnitude increase in growth and production. Furthermore, they suggest that bacterial growth rate in the Southern Ocean is suppressed well below their potential by resource limitation. Enhanced bacterial activity in the presence of krill, which are major sources of DOC in the Southern Ocean, would further increase recycling processes associated with krill activity, resulting in highly efficient krill-bacterial recycling that should be conducive to stimulating periods of high primary productivity in the Southern Ocean.This research is a contribution to projects ICEPOS (REN2002-04165-CO3-O2) and ATOS (POL2006-00550/CTM), funded by the Spanish Ministry of Science and Innovation
Ammonium regeneration: Its contribution to phytoplankton nitrogen requirements in a eutrophic environment
Ammonium regeneration, nutrient uptake, bacterial activity and primary production were measured from March to August 1980 in Bedford Basin, Nova Scotia, Canada, a eutrophic environment. Rates of regeneration and nutrient uptake were determined using 15N isotope dilution and tracer methodology. Although primary production, nutrient uptake and ammonium regeneration were significantly intercorrelated, no relationship was detected between these parameters and heterotrophic activity. The average contribution of ammonium to total nitrogen (ammonium+nitrate) uptake was similar in the spring and in the summer (approximately 60%). On a seasonal average basis, 36% of the phytoplankton ammonium uptake could be supplied by rapid remineralization processes. In spite of the high average contribution of NH4 regeneration to phytoplankton ammonia uptake, there is indirect evidence suggesting that other NH4 sources may occasionally be important
Maternal condition but not corticosterone is linked to brood sex ratio adjustment in a passerine bird
There is evidence of offspring sex ratio adjustment in a range of species, but the potential mechanisms remain largely unknown. Elevated maternal corticosterone (CORT) is associated with factors that can favour brood sex ratio adjustment, such as reduced maternal condition, food availability and partner attractiveness. Therefore, the steroid hormone has been suggested to play a key role in sex ratio manipulation. However, despite correlative and causal evidence CORT is linked to sex ratio manipulation in some avian species, the timing of adjustment varies between studies. Consequently, whether CORT is consistently involved in sex-ratio adjustment, and how the hormone acts as a mechanism for this adjustment remains unclear. Here we measured maternal baseline CORT and body condition in free-living blue tits (Cyanistes caeruleus) over three years and related these factors to brood sex ratio and nestling quality. In addition, a non-invasive technique was employed to experimentally elevate maternal CORT during egg laying, and its effects upon sex ratio and nestling quality were measured. We found that maternal CORT was not correlated with brood sex ratio, but mothers with elevated CORT fledged lighter offspring. Also, experimental elevation of maternal CORT did not influence brood sex ratio or nestling quality. In one year, mothers in superior body condition produced male biased broods, and maternal condition was positively correlated with both nestling mass and growth rate in all years. Unlike previous studies maternal condition was not correlated with maternal CORT. This study provides evidence that maternal condition is linked to brood sex ratio manipulation in blue tits. However, maternal baseline CORT may not be the mechanistic link between the maternal condition and sex ratio adjustment. Overall, this study serves to highlight the complexity of sex ratio adjustment in birds and the difficulties associated with identifying sex biasing mechanisms
- …