199 research outputs found

    Anterolateral ligament reconstruction does not delay functional recovery, rehabilitation, and return to sport after anterior cruciate ligament reconstruction. A matched-pair analysis from the SANTI (Scientific ACL Network International) Study Group

    Get PDF
    Purpose: To determine whether the addition of an anterolateral ligament reconstruction (ALLR) resulted in delayed functional recovery (based on the Knee Santy Athletic Return to Sport [K-STARTS] score) at 6 months after anterior cruciate ligament reconstruction (ACLR). Methods: A retrospective analysis of prospectively collected data from consecutive pa- tients who underwent an ACLR between September 2017 and December 2020 was conducted. Patients who received an isolated hamstring autograft (isolated ACLR group) were propensity matched in a 1:1 ratio to patients who received a hamstring autograft ACLR combined with an ALLR (ACLR-ALLR group). Outcome measures included the Tegner Activity Scale and the K-STARTS testda validated composite return-to-sports test (including the Anterior Cruciate LigamenteReturn to Sport After Injury scale, Qualitative Assessment of Single-Leg Landing tool, limb symmetry index, and ability to change direction using the Modified Illinois Change of Direction Test). Results: The study included 111 matched pairs. At 6 months postoperatively, there were no significant differences between groups in the overall K-STARTS score (65.4 for isolated ACLR vs 61.2 for ACLR-ALLR, P 1⁄4 .087) or the Tegner Activity Scale score (3.7 for isolated ACLR vs 3.8 for ACLR-ALLR, P 1⁄4 .45). In addition, an evaluation of the subscales of the K-STARTS score revealed no disadvantage across the domains of neuromuscular control, limb symmetry index, agility, or psychological readiness to return to sport when an ALLR was performed. Conclusions: The addition of ALLR at the time of ACLR does not delay functional recovery. Spe- cifically, at 6 months postoperatively, there was no disadvantage in patients undergoing ALLR-ACLR, when compared with those undergoing isolated ACLR, with respect to neuromuscular control, limb symmetry indices (hop tests), agility, or psychological readiness to return to sport

    Background Light in Potential Sites for the ANTARES Undersea Neutrino Telescope

    Get PDF
    The ANTARES collaboration has performed a series of {\em in situ} measurements to study the background light for a planned undersea neutrino telescope. Such background can be caused by 40^{40}K decays or by biological activity. We report on measurements at two sites in the Mediterranean Sea at depths of 2400~m and 2700~m, respectively. Three photomultiplier tubes were used to measure single counting rates and coincidence rates for pairs of tubes at various distances. The background rate is seen to consist of three components: a constant rate due to 40^{40}K decays, a continuum rate that varies on a time scale of several hours simultaneously over distances up to at least 40~m, and random bursts a few seconds long that are only correlated in time over distances of the order of a meter. A trigger requiring coincidences between nearby photomultiplier tubes should reduce the trigger rate for a neutrino telescope to a manageable level with only a small loss in efficiency.Comment: 18 pages, 8 figures, accepted for publication in Astroparticle Physic

    The ANTARES Optical Beacon System

    Get PDF
    ANTARES is a neutrino telescope being deployed in the Mediterranean Sea. It consists of a three dimensional array of photomultiplier tubes that can detect the Cherenkov light induced by charged particles produced in the interactions of neutrinos with the surrounding medium. High angular resolution can be achieved, in particular when a muon is produced, provided that the Cherenkov photons are detected with sufficient timing precision. Considerations of the intrinsic time uncertainties stemming from the transit time spread in the photomultiplier tubes and the mechanism of transmission of light in sea water lead to the conclusion that a relative time accuracy of the order of 0.5 ns is desirable. Accordingly, different time calibration systems have been developed for the ANTARES telescope. In this article, a system based on Optical Beacons, a set of external and well-controlled pulsed light sources located throughout the detector, is described. This calibration system takes into account the optical properties of sea water, which is used as the detection volume of the ANTARES telescope. The design, tests, construction and first results of the two types of beacons, LED and laser-based, are presented.Comment: 21 pages, 18 figures, submitted to Nucl. Instr. and Meth. Phys. Res.

    Enhanced deformation of limestone and sandstone in the presence of high pCO2 fluids

    Get PDF
    International audienceGeological repositories subject to the injection of large amounts of anthropogenic carbon dioxide will undergo chemical and mechanical instabilities for which there are currently little experimental data. This study reports on experiments where low and high pCO2 (8~MPa) aqueous fluids where injected into natural rock samples. The experiments were performed in flow-through triaxial cells, where the vertical and confining stresses, temperature, and pressure and composition of the fluid were separately controlled and monitored. The axial vertical strains of two limestones and one sandstone were continuously measured during separate experiments for several months, with a strain rate resolution of 10^-11 s-1. Fluids exiting the triaxial cells where continuously collected and their compositions analysed. The high pCO2 fluids induced an increase in strain rates of the limestones by up to a factor of 5, compared to the low pCO2 fluids. Injection of high pCO2 fluids into the sandstone resulted in deformation rates one order of magnitude smaller than the limestones. The creep accelerating effect of high pCO2 fluids with respect to the limestones was mainly due to the acidification of the injected fluids, resulting in a significant increase in solubility and reaction kinetics of calcite. Compared to the limestones, the much weaker response of the sandstone was due to the much lower solubility and reactivity of quartz in high pCO2 fluids. In general, all samples showed a positive correlation between fluid flow rate and strain rate. X-ray tomography results revealed significant increases in porosity at the inlet portion of each core; the porosity increases were dependent on the original lithological structure and composition. The overall deformation of the samples is interpreted in terms of simultaneous dissolution reactions in pore spaces and intergranular pressure solution creep

    Upregulation of PPARβ/δ Is Associated with Structural and Functional Changes in the Type I Diabetes Rat Diaphragm

    Get PDF
    Diabetes mellitus is associated with alterations in peripheral striated muscles and cardiomyopathy. We examined diaphragmatic function and fiber composition and identified the role of peroxisome proliferator-activated receptors (PPAR alpha and beta/delta) as a factor involved in diaphragm muscle plasticity in response to type I diabetes.Streptozotocin-treated rats were studied after 8 weeks and compared with their controls. Diaphragmatic strips were stimulated in vitro and mechanical and energetic variables were measured, cross bridge kinetics assessed, and the effects of fatigue and hypoxia evaluated. Morphometry, myosin heavy chain isoforms, PPAR alpha and beta/delta gene and protein expression were also assessed. Diabetes induced a decrease in maximum velocity of shortening (-14%, P<0.05) associated with a decrease in myosin ATPase activity (-49%, P<0.05), and an increase in force (+20%, P<0.05) associated with an increase in the number of cross bridges (+14%, P<0.05). These modifications were in agreement with a shift towards slow myosin heavy chain fibers and were associated with an upregulation of PPARbeta/delta (+314% increase in gene and +190% increase in protein expression, P<0.05). In addition, greater resistances to fatigue and hypoxia were observed in diabetic rats.Type I diabetes induced complex mechanical and energetic changes in the rat diaphragm and was associated with an up-regulation of PPARbeta/delta that could improve resistance to fatigue and hypoxia and favour the shift towards slow myosin heavy chain isoforms

    Research priorities for European paediatric emergency medicine

    Get PDF
    Objective Research in European Paediatric Emergency Medicine (REPEM) network is a collaborative group of 69 paediatric emergency medicine (PEM) physicians from 20 countries in Europe, initiated in 2006. To further improve paediatric emergency care in Europe, the aim of this study was to define research priorities for PEM in Europe to guide the development of future research projects. Design and Setting We carried out an online survey in a modified three-stage Delphi study. Eligible participants were members of the REPEM network. In stage 1, the REPEM steering committee prepared a list of research topics. In stage 2, REPEM members rated on a 6-point scale research topics and they could add research topics and comment on the list for further refinement. Stage 3 included further prioritisation using the Hanlon Process of Prioritisation (HPP) to give more emphasis to the feasibility of a research topic. Results Based on 52 respondents (response rates per stage varying from 41% to 57%), we identified the conditions 'fever', 'sepsis' and 'respiratory infections', and the processes/interventions 'biomarkers', 'risk stratification' and 'practice variation' as common themes of research interest. The HPP identified highest priority for 4 of the 5 highest prioritised items by the Delphi process, incorporating prevalence and severity of each condition and feasibility of undertaking such research. Conclusions While the high diversity in emergency department (ED) populations, cultures, healthcare systems and healthcare delivery in European PEM prompts to focus on practice variation of ED conditions, our defined research priority list will help guide further collaborative research efforts within the REPEM network to improve PEM care in Europe.publishersversionPeer reviewe

    The ANTARES Optical Module

    Get PDF
    The ANTARES collaboration is building a deep sea neutrino telescope in the Mediterranean Sea. This detector will cover a sensitive area of typically 0.1 km-squared and will be equipped with about 1000 optical modules. Each of these optical modules consists of a large area photomultiplier and its associated electronics housed in a pressure resistant glass sphere. The design of the ANTARES optical module, which is a key element of the detector, has been finalized following extensive R & D studies and is reviewed here in detail.Comment: 26 pages, 15 figures, to be published in NI
    corecore