54 research outputs found

    Use of the interRAI CHESS Scale to Predict Mortality among Persons with Neurological Conditions in Three Care Settings

    Get PDF
    Background: Persons with certain neurological conditions have higher mortality rates than the population without neurological conditions, but the risk factors for increased mortality within diagnostic groups are less well understood. The interRAI CHESS scale has been shown to be a strong predictor of mortality in the overall population of persons receiving health care in community and institutional settings. This study examines the performance of CHESS as a predictor of mortality among persons with 11 different neurological conditions. Methods: Survival analyses were done with interRAI assessments linked to mortality data among persons in home care (n = 359,940), complex continuing care hospitals/units (n = 88,721), and nursing homes (n = 185,309) in seven Canadian provinces/territories. Results: CHESS was a significant predictor of mortality in all 3 care settings for the 11 neurological diagnostic groups considered after adjusting for age and sex. The distribution of CHESS scores varied between diagnostic groups and within diagnostic groups in different care settings. Conclusions: CHESS is a valid predictor of mortality in neurological populations in community and institutional care. It may prove useful for several clinical, administrative, policy-development, evaluation and research purposes. Because it is routinely gathered as part of normal clinical practice in jurisdictions (like Canada) that have implemented interRAI assessment instruments, CHESS can be derived without additional need for data collection.Public Health Agency of Canada, Project #6271-15-2010/3970773, Ontario Home Care Research and Knowledge Exchange Chair (to JPH) through the Ontario Ministry of Health and Long Term Car

    The CNDR: Collaborating to translate new therapies for Canadians

    Get PDF
    Background: Patient registries represent an important method of organizing real world patient information for clinical and research purposes. Registries can facilitate clinical trial planning and recruitment and are particularly useful in this regard for uncommon and rare diseases. Neuromuscular diseases (NMDs) are individually rare but in aggregate have a significant prevalence. In Canada, information on NMDs is lacking. Barriers to performing Canadian multicentre NMD research exist which can be overcome by a comprehensive and collaborative NMD registry. Methods: We describe the objectives, design, feasibility and initial recruitment results for the Canadian Neuromuscular Disease Registry (CNDR). Results: The CNDR is a clinic-based registry which launched nationally in June 2011, incorporates paediatric and adult neuromuscular clinics in British Columbia, Alberta, Ontario, Quebec, New Brunswick and Nova Scotia and, as of December 2012, has recruited 1161 patients from 12 provinces and territories. Complete medical datasets have been captured on 460 index disease patients. Another 618 non-index patients have been recruited with capture of physician-confirmed diagnosis and contact information. We have demonstrated the feasibility of blended clinic and central office-based recruitment. Index disease patients recruited at the time of writing include 253 with Duchenne and Becker muscular dystrophy, 161 with myotonic dystrophy, and 71 with ALS. Conclusions: The CNDR is a new nationwide registry of patients with NMDs that represents an important advance in Canadian neuromuscular disease research capacity. It provides an innovative platform for organizing patient information to facilitate clinical research and to expedite translation of recent laboratory findings into human studies

    The Canadian Neuromuscular Disease Registry: Connecting Patients to National and International Research Opportunities

    Get PDF
    Introduction Patient registries serve an important role in rare disease research, particularly for the recruitment and planning of clinical trials. The Canadian Neuromuscular Disease Registry was established with the primary objective of improving the future for neuromuscular (NM) patients through the enablement and support of research into potential treatments. Methods In this report, we discuss design and utilization of the Canadian Neuromuscular Disease Registry with special reference to the paediatric cohort currently enrolled in the registry. Results As of July 25, 2017, there are 658 paediatric participants enrolled in the registry, 249 are dystrophinopathies (229 are Duchenne muscular dystrophy), 57 are myotonic dystrophy participants, 98 spinal muscular atrophy participants and 65 are limb girdle muscular dystrophy. A total of 175 patients have another NM diagnosis. The registry has facilitated 20 clinical trial inquiries, 5 mail-out survey studies and 5 other studies in the paediatric population. Discussion The strengths of the registry are discussed. The registry has proven to be an invaluable tool to NM disease research and has increased Canada’s visibility as a competitive location for the conduct of clinical trials for NM therapies

    Outcomes in pediatric studies of medium-chain acyl-coA dehydrogenase (MCAD) deficiency and phenylketonuria (PKU): a review.

    Get PDF
    BACKGROUND: Inherited metabolic diseases (IMDs) are a group of individually rare single-gene diseases. For many IMDs, there is a paucity of high-quality evidence that evaluates the effectiveness of clinical interventions. Clinical effectiveness trials of IMD interventions could be supported through the development of core outcome sets (COSs), a recommended minimum set of standardized, high-quality outcomes and associated outcome measurement instruments to be incorporated by all trials in an area of study. We began the process of establishing pediatric COSs for two IMDs, medium-chain acyl-CoA dehydrogenase (MCAD) deficiency and phenylketonuria (PKU), by reviewing published literature to describe outcomes reported by authors, identify heterogeneity in outcomes across studies, and assemble a candidate list of outcomes. METHODS: We used a comprehensive search strategy to identify primary studies and guidelines relevant to children with MCAD deficiency and PKU, extracting study characteristics and outcome information from eligible studies including outcome measurement instruments for select outcomes. Informed by an established framework and a previously published pediatric COS, outcomes were grouped into five, mutually-exclusive, a priori core areas: growth and development, life impact, pathophysiological manifestations, resource use, and death. RESULTS: For MCAD deficiency, we identified 83 outcomes from 52 articles. The most frequently represented core area was pathophysiological manifestations, with 33 outcomes reported in 29/52 articles (56%). Death was the most frequently reported outcome. One-third of outcomes were reported by a single study. The most diversely measured outcome was cognition and intelligence/IQ for which eight unique measurement instruments were reported among 14 articles. For PKU, we identified 97 outcomes from 343 articles. The most frequently represented core area was pathophysiological manifestations with 31 outcomes reported in 281/343 articles (82%). Phenylalanine concentration was the most frequently reported outcome. Sixteen percent of outcomes were reported by a single study. Similar to MCAD deficiency, the most diversely measured PKU outcome was cognition and intelligence/IQ with 39 different instruments reported among 82 articles. CONCLUSIONS: Heterogeneity of reported outcomes and outcome measurement instruments across published studies for both MCAD deficiency and PKU highlights the need for COSs for these diseases, to promote the use of meaningful outcomes and facilitate comparisons across studies

    Planck intermediate results. III. The relation between galaxy cluster mass and Sunyaev-Zeldovich signal

    Get PDF
    We examine the relation between the galaxy cluster mass M and Sunyaev-Zeldovich (SZ) effect signal D_A^2 Y for a sample of 19 objects for which weak lensing (WL) mass measurements obtained from Subaru Telescope data are available in the literature. Hydrostatic X-ray masses are derived from XMM-Newton archive data and the SZ effect signal is measured from Planck all-sky survey data. We find an M_WL-D_A^2 Y relation that is consistent in slope and normalisation with previous determinations using weak lensing masses; however, there is a normalisation offset with respect to previous measures based on hydrostatic X-ray mass-proxy relations. We verify that our SZ effect measurements are in excellent agreement with previous determinations from Planck data. For the present sample, the hydrostatic X-ray masses at R_500 are on average ~ 20 per cent larger than the corresponding weak lensing masses, at odds with expectations. We show that the mass discrepancy is driven by a difference in mass concentration as measured by the two methods, and, for the present sample, the mass discrepancy and difference in mass concentration is especially large for disturbed systems. The mass discrepancy is also linked to the offset in centres used by the X-ray and weak lensing analyses, which again is most important in disturbed systems. We outline several approaches that are needed to help achieve convergence in cluster mass measurement with X-ray and weak lensing observations.Comment: 19 pages, 9 figures, matches accepted versio

    A National Spinal Muscular Atrophy Registry for Real-World Evidence.

    Get PDF
    BACKGROUND: Spinal muscular atrophy (SMA) is a devastating rare disease that affects individuals regardless of ethnicity, gender, and age. The first-approved disease-modifying therapy for SMA, nusinursen, was approved by Health Canada, as well as by American and European regulatory agencies following positive clinical trial outcomes. The trials were conducted in a narrow pediatric population defined by age, severity, and genotype. Broad approval of therapy necessitates close follow-up of potential rare adverse events and effectiveness in the larger real-world population. METHODS: The Canadian Neuromuscular Disease Registry (CNDR) undertook an iterative multi-stakeholder process to expand the existing SMA dataset to capture items relevant to patient outcomes in a post-marketing environment. The CNDR SMA expanded registry is a longitudinal, prospective, observational study of patients with SMA in Canada designed to evaluate the safety and effectiveness of novel therapies and provide practical information unattainable in trials. RESULTS: The consensus expanded dataset includes items that address therapy effectiveness and safety and is collected in a multicenter, prospective, observational study, including SMA patients regardless of therapeutic status. The expanded dataset is aligned with global datasets to facilitate collaboration. Additionally, consensus dataset development aimed to standardize appropriate outcome measures across the network and broader Canadian community. Prospective outcome studies, data use, and analyses are independent of the funding partner. CONCLUSION: Prospective outcome data collected will provide results on safety and effectiveness in a post-therapy approval era. These data are essential to inform improvements in care and access to therapy for all SMA patients

    Eight years after an international workshop on myotonic dystrophy patient registries: case study of a global collaboration for a rare disease.

    Get PDF
    Background Myotonic Dystrophy is the most common form of muscular dystrophy in adults, affecting an estimated 10 per 100,000 people. It is a multisystemic disorder affecting multiple generations with increasing severity. There are currently no licenced therapies to reverse, slow down or cure its symptoms. In 2009 TREAT-NMD (a global alliance with the mission of improving trial readiness for neuromuscular diseases) and the Marigold Foundation held a workshop of key opinion leaders to agree a minimal dataset for patient registries in myotonic dystrophy. Eight years after this workshop, we surveyed 22 registries collecting information on myotonic dystrophy patients to assess the proliferation and utility the dataset agreed in 2009. These registries represent over 10,000 myotonic dystrophy patients worldwide (Europe, North America, Asia and Oceania). Results The registries use a variety of data collection methods (e.g. online patient surveys or clinician led) and have a variety of budgets (from being run by volunteers to annual budgets over €200,000). All registries collect at least some of the originally agreed data items, and a number of additional items have been suggested in particular items on cognitive impact. Conclusions The community should consider how to maximise this collective resource in future therapeutic programmes

    The TREAT-NMD DMD Global Database: analysis of more than 7,000 Duchenne muscular dystrophy mutations.

    Get PDF
    Analyzing the type and frequency of patient-specific mutations that give rise to Duchenne muscular dystrophy (DMD) is an invaluable tool for diagnostics, basic scientific research, trial planning, and improved clinical care. Locus-specific databases allow for the collection, organization, storage, and analysis of genetic variants of disease. Here, we describe the development and analysis of the TREAT-NMD DMD Global database (http://umd.be/TREAT_DMD/). We analyzed genetic data for 7,149 DMD mutations held within the database. A total of 5,682 large mutations were observed (80% of total mutations), of which 4,894 (86%) were deletions (1 exon or larger) and 784 (14%) were duplications (1 exon or larger). There were 1,445 small mutations (smaller than 1 exon, 20% of all mutations), of which 358 (25%) were small deletions and 132 (9%) small insertions and 199 (14%) affected the splice sites. Point mutations totalled 756 (52% of small mutations) with 726 (50%) nonsense mutations and 30 (2%) missense mutations. Finally, 22 (0.3%) mid-intronic mutations were observed. In addition, mutations were identified within the database that would potentially benefit from novel genetic therapies for DMD including stop codon read-through therapies (10% of total mutations) and exon skipping therapy (80% of deletions and 55% of total mutations)
    corecore