3,327 research outputs found
The metallicity of gamma-ray burst environments from high energy observations
Gamma-ray bursts (GRBs) and their early afterglows ionise their circumburst
material. Only high-energy spectroscopy therefore, allows examination of the
matter close to the burst itself. Soft X-ray absorption allows an estimate to
be made of the total column density in metals. The detection of the X-ray
afterglow can also be used to place a limit on the total gas column along the
line of sight based on the Compton scattering opacity. Such a limit would
enable, for the first time, the determination of lower limits on the
metallicity in the circumburst environments of GRBs. In this paper, we
determine the limits that can be placed on the total gas column density in the
vicinities of GRBs based on the Compton scattering. We simulate the effects of
Compton scattering on a collimated beam of high energy photons passing through
a shell of high column density material to determine the expected lightcurves,
luminosities, and spectra. We compare these predictions to observations, and
determine what limits can realistically be placed on the total gas column
density. The smearing out of pulses in the lightcurve from Compton scattering
is not likely to be observable, and its absence does not place strong
constraints on the Compton depth for GRBs. However, the distribution of
observed luminosities of bursts allows us to place statistical, model-dependent
limits that are typically <~1e25 cm^{-2} for less luminous bursts, and as low
as ~1e24 cm$^{-2} for the most luminous. Using the shape of the high-energy
broadband spectrum, however, in some favourable cases, limits as low as ~5e24
cm^{-2} can placed on individual bursts, implying metallicity lower limits from
X- and gamma-rays alone from 0 up to 0.01 Z/Zsun. At extremely high redshifts,
this limit would be at least 0.02 Z/Z_sun, enough to discriminate population
III from non-primordial GRBs.Comment: 4 pages, 4 figures, submitted to A&A letter
Grid of Lya radiation transfer models for the interpretation of distant galaxies
Lya is a key diagnostic for numerous observations of distant star-forming
galaxies. It's interpretation requires, however, detailed radiation transfer
models. We provide an extensive grid of 3D radiation transfer models simulating
the Lya and UV continuum radiation transfer in the interstellar medium of
star-forming galaxies. We have improved our Monte Carlo MCLya code, and have
used it to compute a grid of 6240 radiation transfer models for homogeneous
spherical shells containing HI and dust surrounding a central source. The
simulations cover a wide range of parameter space. We present the detailed
predictions from our models including in particular the Lya escape fraction
fesc, the continuum attenuation, and detailed Lya line profiles. The Lya escape
fraction is shown to depend strongly on dust content, but also on other
parameters (HI column density and radial velocity). The predicted line profiles
show a great diversity of morphologies ranging from broad absorption lines to
emission lines with complex features. The results from our simulations are
distributed in electronic format. Our models should be of use for the
interpretation of observations from distant galaxies, for other simulations,
and should also serve as an important base for comparison for future, more
refined, radiation transfer models.Comment: Accepted for publication in Astronomy & Astrophysics. Results from
simulations available at http://obswww.unige.ch/sf
Cooling and the SU(2) Instanton Vaccuum
We present results of an investigation into the nature of instantons in
4-dimensional pure gauge lattice \ obtained from configurations which
have been cooled using an under-relaxed cooling algorithm. We discuss ways of
calibrating the cooling and the effects of different degrees of cooling, and
compare our data for the shapes, sizes and locations of instantons with
continuum results. In this paper we extend the ideas and techniques developed
by us for use in , and compare the results with those obtained by other
groups.Comment: 22 pages, LaTeX, uuencoded compressed tarfile of figures sent
separately. Full (compressed) postscript version (118k)available from
ftp://rock.helsinki.fi/pub/preprints/tft/Year1995/HU-TFT-95-21/paper.ps.
Discovery of a compact gas-rich DLA galaxy at z = 2.2: evidences for a starburst-driven outflow
We present the detection of Ly-alpha, [OIII] and H-alpha emission associated
with an extremely strong DLA system (N(HI) = 10^22.10 cm^-2) at z=2.207 towards
the quasar SDSS J113520-001053. This is the largest HI column density ever
measured along a QSO line of sight, though typical of what is seen in GRB-DLAs.
This absorption system also classifies as ultrastrong MgII system with
W2796_r=3.6 A. The mean metallicity of the gas ([Zn/H]=-1.1) and dust depletion
factors ([Zn/Fe]=0.72, [Zn/Cr]=0.49) are consistent with (and only marginally
larger than) the mean values found in the general QSO-DLA population. The
[OIII]-Ha emitting region has a very small impact parameter with respect to the
QSO line of sight, b=0.1", and is unresolved. From the Ha line, we measure
SFR=25 Msun/yr. The Ly-a line is double-peaked and is spatially extended. More
strikingly, the blue and red Ly-a peaks arise from distinct regions extended
over a few kpc on either side of the star-forming region. We propose that this
is the consequence of Ly-a transfer in outflowing gas. The presence of
starburst-driven outflows is also in agreement with the large SFR together with
a small size and low mass of the galaxy (Mvir~10^10 Msun). From the stellar UV
continuum luminosity of the galaxy, we estimate an age of at most a few 10^7
yr, again consistent with a recent starburst scenario. We interpret the data as
the observation of a young, gas rich, compact starburst galaxy, from which
material is expelled through collimated winds powered by the vigorous star
formation activity. We substantiate this picture by modelling the radiative
transfer of Ly-a photons in the galactic counterpart. Though our model (a
spherical galaxy with bipolar outflowing jets) is a simplistic representation
of the true gas distribution and velocity field, the agreement between the
observed and simulated properties is particularly good. [abridged]Comment: 15 pages, 18 figures, 4 tables, accepted for publication in Astronomy
and Astrophysic
Stabilizing the surface morphology of Si1–x–yGexCy/Si heterostructures grown by molecular beam epitaxy through the use of a silicon-carbide source
Si1–x–yGexCy/Si superlattices were grown by solid-source molecular beam epitaxy using silicon carbide as a source of C. Samples consisting of alternating layers of nominally 25 nm Si1–x–yGexCy and 35 nm Si for 10 periods were characterized by high-resolution x-ray diffraction, transmission electron microscopy (TEM), and Rutherford backscattering spectrometry to determine strain, thickness, and composition. C resonance backscattering and secondary ion mass spectrometries were used to measure the total C concentration in the Si1–x–yGexCy layers, allowing for an accurate determination of the substitutional C fraction to be made as a function of growth rate for fixed Ge and substitutional C compositions. For C concentrations close to 1%, high-quality layers were obtained without the use of Sb-surfactant mediation. These samples were found to be structurally perfect to a level consistent with cross-sectional TEM (< 10^7 defects/cm^2) and showed considerably improved homogeneity as compared with similar structures grown using graphite as the source for C. For higher Ge and C concentrations, Sb-surfactant mediation was found to be required to stabilize the surface morphology. The maximum value of substitutional C concentration, above which excessive generation of stacking fault defects caused polycrystalline and/or amorphous growth, was found to be approximately 2.4% in samples containing between 25 and 30% Ge. The fraction of substitutional C was found to decrease from roughly 60% by a factor of 0.86 as the Si1–x–yGexCy growth rate increased from 0.1 to 1.0 nm/s
Chiral Symmetry Restoration in the Schwinger Model with Domain Wall Fermions
Domain Wall Fermions utilize an extra space time dimension to provide a
method for restoring the regularization induced chiral symmetry breaking in
lattice vector gauge theories even at finite lattice spacing. The breaking is
restored at an exponential rate as the size of the extra dimension increases.
Before this method can be used in dynamical simulations of lattice QCD, the
dependence of the restoration rate to the other parameters of the theory and,
in particular, the lattice spacing must be investigated. In this paper such an
investigation is carried out in the context of the two flavor lattice Schwinger
model.Comment: LaTeX, 37 pages including 18 figures. Added comments regarding power
law fitting in sect 7. Also, few changes were made to elucidate the content
in sect. 5.1 and 5.3. To appear in Phys. Rev.
The polarisation of afterglow emission reveals GRB jet structure
We numerically compute light and polarisation curves of gamma-ray burst
afterglows for various configurations of the jet luminosity structure and for
different dynamical evolutions. We especially consider the standard homogeneous
``top hat'' jet and the ``universal structured jet'' with power-law wings. We
also investigate a possible more physical variation of the ``top hat'' model:
the ``Gaussian jet''. The polarisation curves for the last two jet types are
shown here for the first time together with the computation of X-ray and radio
polarised fluxes. We show that the lightcurves of the total flux from these
configurations are very similar to each other, and therefore only very high
quality data could allow us to pin down the underlying jet structure. We
demonstrate instead that polarisation curves are a powerful means to solve the
jet structure, since the predicted behaviour of polarisation and its position
angle at times around the jet break are very different if not opposite. We
conclude that the afterglow polarisation measurements provide clear footprints
of any outflow energy distribution (unlike the lightcurves of the total flux)
and the joint analysis of the total and polarised flux should reveal GRBs jet
structure.Comment: 16 pages, 18 figures, MNRAS, temp, 321. Light curves and polarisation
curves for a Gaussian jet added. Cartoon of the three jet structures adde
Do contaminants originating from state-of-the-art treated wastewater impact the ecological quality of surface waters?
Since the 1980s, advances in wastewater treatment technology have led to considerably improved surface water quality in the urban areas of many high income countries. However, trace concentrations of organic wastewater-associated contaminants may still pose a key environmental hazard impairing the ecological quality of surface waters. To identify key impact factors, we analyzed the effects of a wide range of anthropogenic and environmental variables on the aquatic macroinvertebrate community. We assessed ecological water quality at 26 sampling sites in four urban German lowland river systems with a 0–100% load of state-of-the-art biological activated sludge treated wastewater. The chemical analysis suite comprised 12 organic contaminants (five phosphor organic flame retardants, two musk fragrances, bisphenol A, nonylphenol, octylphenol, diethyltoluamide, terbutryn), 16 polycyclic aromatic hydrocarbons, and 12 heavy metals. Non-metric multidimensional scaling identified organic contaminants that are mainly wastewater-associated (i.e., phosphor organic flame retardants, musk fragrances, and diethyltoluamide) as a major impact variable on macroinvertebrate species composition. The structural degradation of streams was also identified as a significant factor. Multiple linear regression models revealed a significant impact of organic contaminants on invertebrate populations, in particular on Ephemeroptera, Plecoptera, and Trichoptera species. Spearman rank correlation analyses confirmed wastewater-associated organic contaminants as the most significant variable negatively impacting the biodiversity of sensitive macroinvertebrate species. In addition to increased aquatic pollution with organic contaminants, a greater wastewater fraction was accompanied by a slight decrease in oxygen concentration and an increase in salinity. This study highlights the importance of reducing the wastewater-associated impact on surface waters. For aquatic ecosystems in urban areas this would lead to: (i) improvement of the ecological integrity, (ii) reduction of biodiversity loss, and (iii) faster achievement of objectives of legislative requirements, e.g., the European Water Framework Directive
First-principles modeling of the polycyclic aromatic hydrocarbons reduction
Density functional theory modelling of the reduction of realistic
nanographene molecules (C42H18, C48H18 and C60H24) by molecular hydrogen
evidences for the presence of limits in the hydrogenation process. These limits
caused the contentions between three-fold symmetry of polycyclic aromatic
hydrocarbon molecules and two-fold symmetry of adsorbed hydrogen pairs.
Increase of the binding energy between nanographenes during reduction is also
discussed as possible cause of the experimentally observed limited
hydrogenation of studied nanographenes.Comment: 18 pages, 7 figures, accepted to J. Phys. Chem.
The variable X-ray light curve of GRB 050713A: the case of refreshed shocks
We present a detailed study of the spectral and temporal properties of the
X-ray and optical emission of GRB050713a up to 0.5 day after the main GRB
event. The X-ray light curve exhibits large amplitude variations with several
rebrightenings superposed on the underlying three-segment broken powerlaw that
is often seen in Swift GRBs. Our time-resolved spectral analysis supports the
interpretation of a long-lived central engine, with rebrightenings consistent
with energy injection in refreshed shocks as slower shells generated in the
central engine prompt phase catch up with the afterglow shock at later times.
Our sparsely-sampled light curve of the optical afterglow can be fitted with a
single power law without large flares. The optical decay index appears flatter
than the X-ray one, especially at later times.Comment: few changes, to be published in A&
- …
