3,327 research outputs found

    The metallicity of gamma-ray burst environments from high energy observations

    Full text link
    Gamma-ray bursts (GRBs) and their early afterglows ionise their circumburst material. Only high-energy spectroscopy therefore, allows examination of the matter close to the burst itself. Soft X-ray absorption allows an estimate to be made of the total column density in metals. The detection of the X-ray afterglow can also be used to place a limit on the total gas column along the line of sight based on the Compton scattering opacity. Such a limit would enable, for the first time, the determination of lower limits on the metallicity in the circumburst environments of GRBs. In this paper, we determine the limits that can be placed on the total gas column density in the vicinities of GRBs based on the Compton scattering. We simulate the effects of Compton scattering on a collimated beam of high energy photons passing through a shell of high column density material to determine the expected lightcurves, luminosities, and spectra. We compare these predictions to observations, and determine what limits can realistically be placed on the total gas column density. The smearing out of pulses in the lightcurve from Compton scattering is not likely to be observable, and its absence does not place strong constraints on the Compton depth for GRBs. However, the distribution of observed luminosities of bursts allows us to place statistical, model-dependent limits that are typically <~1e25 cm^{-2} for less luminous bursts, and as low as ~1e24 cm$^{-2} for the most luminous. Using the shape of the high-energy broadband spectrum, however, in some favourable cases, limits as low as ~5e24 cm^{-2} can placed on individual bursts, implying metallicity lower limits from X- and gamma-rays alone from 0 up to 0.01 Z/Zsun. At extremely high redshifts, this limit would be at least 0.02 Z/Z_sun, enough to discriminate population III from non-primordial GRBs.Comment: 4 pages, 4 figures, submitted to A&A letter

    Grid of Lya radiation transfer models for the interpretation of distant galaxies

    Full text link
    Lya is a key diagnostic for numerous observations of distant star-forming galaxies. It's interpretation requires, however, detailed radiation transfer models. We provide an extensive grid of 3D radiation transfer models simulating the Lya and UV continuum radiation transfer in the interstellar medium of star-forming galaxies. We have improved our Monte Carlo MCLya code, and have used it to compute a grid of 6240 radiation transfer models for homogeneous spherical shells containing HI and dust surrounding a central source. The simulations cover a wide range of parameter space. We present the detailed predictions from our models including in particular the Lya escape fraction fesc, the continuum attenuation, and detailed Lya line profiles. The Lya escape fraction is shown to depend strongly on dust content, but also on other parameters (HI column density and radial velocity). The predicted line profiles show a great diversity of morphologies ranging from broad absorption lines to emission lines with complex features. The results from our simulations are distributed in electronic format. Our models should be of use for the interpretation of observations from distant galaxies, for other simulations, and should also serve as an important base for comparison for future, more refined, radiation transfer models.Comment: Accepted for publication in Astronomy & Astrophysics. Results from simulations available at http://obswww.unige.ch/sf

    Cooling and the SU(2) Instanton Vaccuum

    Get PDF
    We present results of an investigation into the nature of instantons in 4-dimensional pure gauge lattice SU(2)SU(2)\ obtained from configurations which have been cooled using an under-relaxed cooling algorithm. We discuss ways of calibrating the cooling and the effects of different degrees of cooling, and compare our data for the shapes, sizes and locations of instantons with continuum results. In this paper we extend the ideas and techniques developed by us for use in O(3)O(3), and compare the results with those obtained by other groups.Comment: 22 pages, LaTeX, uuencoded compressed tarfile of figures sent separately. Full (compressed) postscript version (118k)available from ftp://rock.helsinki.fi/pub/preprints/tft/Year1995/HU-TFT-95-21/paper.ps.

    Discovery of a compact gas-rich DLA galaxy at z = 2.2: evidences for a starburst-driven outflow

    Full text link
    We present the detection of Ly-alpha, [OIII] and H-alpha emission associated with an extremely strong DLA system (N(HI) = 10^22.10 cm^-2) at z=2.207 towards the quasar SDSS J113520-001053. This is the largest HI column density ever measured along a QSO line of sight, though typical of what is seen in GRB-DLAs. This absorption system also classifies as ultrastrong MgII system with W2796_r=3.6 A. The mean metallicity of the gas ([Zn/H]=-1.1) and dust depletion factors ([Zn/Fe]=0.72, [Zn/Cr]=0.49) are consistent with (and only marginally larger than) the mean values found in the general QSO-DLA population. The [OIII]-Ha emitting region has a very small impact parameter with respect to the QSO line of sight, b=0.1", and is unresolved. From the Ha line, we measure SFR=25 Msun/yr. The Ly-a line is double-peaked and is spatially extended. More strikingly, the blue and red Ly-a peaks arise from distinct regions extended over a few kpc on either side of the star-forming region. We propose that this is the consequence of Ly-a transfer in outflowing gas. The presence of starburst-driven outflows is also in agreement with the large SFR together with a small size and low mass of the galaxy (Mvir~10^10 Msun). From the stellar UV continuum luminosity of the galaxy, we estimate an age of at most a few 10^7 yr, again consistent with a recent starburst scenario. We interpret the data as the observation of a young, gas rich, compact starburst galaxy, from which material is expelled through collimated winds powered by the vigorous star formation activity. We substantiate this picture by modelling the radiative transfer of Ly-a photons in the galactic counterpart. Though our model (a spherical galaxy with bipolar outflowing jets) is a simplistic representation of the true gas distribution and velocity field, the agreement between the observed and simulated properties is particularly good. [abridged]Comment: 15 pages, 18 figures, 4 tables, accepted for publication in Astronomy and Astrophysic

    Stabilizing the surface morphology of Si1–x–yGexCy/Si heterostructures grown by molecular beam epitaxy through the use of a silicon-carbide source

    Get PDF
    Si1–x–yGexCy/Si superlattices were grown by solid-source molecular beam epitaxy using silicon carbide as a source of C. Samples consisting of alternating layers of nominally 25 nm Si1–x–yGexCy and 35 nm Si for 10 periods were characterized by high-resolution x-ray diffraction, transmission electron microscopy (TEM), and Rutherford backscattering spectrometry to determine strain, thickness, and composition. C resonance backscattering and secondary ion mass spectrometries were used to measure the total C concentration in the Si1–x–yGexCy layers, allowing for an accurate determination of the substitutional C fraction to be made as a function of growth rate for fixed Ge and substitutional C compositions. For C concentrations close to 1%, high-quality layers were obtained without the use of Sb-surfactant mediation. These samples were found to be structurally perfect to a level consistent with cross-sectional TEM (< 10^7 defects/cm^2) and showed considerably improved homogeneity as compared with similar structures grown using graphite as the source for C. For higher Ge and C concentrations, Sb-surfactant mediation was found to be required to stabilize the surface morphology. The maximum value of substitutional C concentration, above which excessive generation of stacking fault defects caused polycrystalline and/or amorphous growth, was found to be approximately 2.4% in samples containing between 25 and 30% Ge. The fraction of substitutional C was found to decrease from roughly 60% by a factor of 0.86 as the Si1–x–yGexCy growth rate increased from 0.1 to 1.0 nm/s

    Chiral Symmetry Restoration in the Schwinger Model with Domain Wall Fermions

    Get PDF
    Domain Wall Fermions utilize an extra space time dimension to provide a method for restoring the regularization induced chiral symmetry breaking in lattice vector gauge theories even at finite lattice spacing. The breaking is restored at an exponential rate as the size of the extra dimension increases. Before this method can be used in dynamical simulations of lattice QCD, the dependence of the restoration rate to the other parameters of the theory and, in particular, the lattice spacing must be investigated. In this paper such an investigation is carried out in the context of the two flavor lattice Schwinger model.Comment: LaTeX, 37 pages including 18 figures. Added comments regarding power law fitting in sect 7. Also, few changes were made to elucidate the content in sect. 5.1 and 5.3. To appear in Phys. Rev.

    The polarisation of afterglow emission reveals GRB jet structure

    Full text link
    We numerically compute light and polarisation curves of gamma-ray burst afterglows for various configurations of the jet luminosity structure and for different dynamical evolutions. We especially consider the standard homogeneous ``top hat'' jet and the ``universal structured jet'' with power-law wings. We also investigate a possible more physical variation of the ``top hat'' model: the ``Gaussian jet''. The polarisation curves for the last two jet types are shown here for the first time together with the computation of X-ray and radio polarised fluxes. We show that the lightcurves of the total flux from these configurations are very similar to each other, and therefore only very high quality data could allow us to pin down the underlying jet structure. We demonstrate instead that polarisation curves are a powerful means to solve the jet structure, since the predicted behaviour of polarisation and its position angle at times around the jet break are very different if not opposite. We conclude that the afterglow polarisation measurements provide clear footprints of any outflow energy distribution (unlike the lightcurves of the total flux) and the joint analysis of the total and polarised flux should reveal GRBs jet structure.Comment: 16 pages, 18 figures, MNRAS, temp, 321. Light curves and polarisation curves for a Gaussian jet added. Cartoon of the three jet structures adde

    Do contaminants originating from state-of-the-art treated wastewater impact the ecological quality of surface waters?

    Get PDF
    Since the 1980s, advances in wastewater treatment technology have led to considerably improved surface water quality in the urban areas of many high income countries. However, trace concentrations of organic wastewater-associated contaminants may still pose a key environmental hazard impairing the ecological quality of surface waters. To identify key impact factors, we analyzed the effects of a wide range of anthropogenic and environmental variables on the aquatic macroinvertebrate community. We assessed ecological water quality at 26 sampling sites in four urban German lowland river systems with a 0–100% load of state-of-the-art biological activated sludge treated wastewater. The chemical analysis suite comprised 12 organic contaminants (five phosphor organic flame retardants, two musk fragrances, bisphenol A, nonylphenol, octylphenol, diethyltoluamide, terbutryn), 16 polycyclic aromatic hydrocarbons, and 12 heavy metals. Non-metric multidimensional scaling identified organic contaminants that are mainly wastewater-associated (i.e., phosphor organic flame retardants, musk fragrances, and diethyltoluamide) as a major impact variable on macroinvertebrate species composition. The structural degradation of streams was also identified as a significant factor. Multiple linear regression models revealed a significant impact of organic contaminants on invertebrate populations, in particular on Ephemeroptera, Plecoptera, and Trichoptera species. Spearman rank correlation analyses confirmed wastewater-associated organic contaminants as the most significant variable negatively impacting the biodiversity of sensitive macroinvertebrate species. In addition to increased aquatic pollution with organic contaminants, a greater wastewater fraction was accompanied by a slight decrease in oxygen concentration and an increase in salinity. This study highlights the importance of reducing the wastewater-associated impact on surface waters. For aquatic ecosystems in urban areas this would lead to: (i) improvement of the ecological integrity, (ii) reduction of biodiversity loss, and (iii) faster achievement of objectives of legislative requirements, e.g., the European Water Framework Directive

    First-principles modeling of the polycyclic aromatic hydrocarbons reduction

    Full text link
    Density functional theory modelling of the reduction of realistic nanographene molecules (C42H18, C48H18 and C60H24) by molecular hydrogen evidences for the presence of limits in the hydrogenation process. These limits caused the contentions between three-fold symmetry of polycyclic aromatic hydrocarbon molecules and two-fold symmetry of adsorbed hydrogen pairs. Increase of the binding energy between nanographenes during reduction is also discussed as possible cause of the experimentally observed limited hydrogenation of studied nanographenes.Comment: 18 pages, 7 figures, accepted to J. Phys. Chem.

    The variable X-ray light curve of GRB 050713A: the case of refreshed shocks

    Full text link
    We present a detailed study of the spectral and temporal properties of the X-ray and optical emission of GRB050713a up to 0.5 day after the main GRB event. The X-ray light curve exhibits large amplitude variations with several rebrightenings superposed on the underlying three-segment broken powerlaw that is often seen in Swift GRBs. Our time-resolved spectral analysis supports the interpretation of a long-lived central engine, with rebrightenings consistent with energy injection in refreshed shocks as slower shells generated in the central engine prompt phase catch up with the afterglow shock at later times. Our sparsely-sampled light curve of the optical afterglow can be fitted with a single power law without large flares. The optical decay index appears flatter than the X-ray one, especially at later times.Comment: few changes, to be published in A&
    corecore