Domain Wall Fermions utilize an extra space time dimension to provide a
method for restoring the regularization induced chiral symmetry breaking in
lattice vector gauge theories even at finite lattice spacing. The breaking is
restored at an exponential rate as the size of the extra dimension increases.
Before this method can be used in dynamical simulations of lattice QCD, the
dependence of the restoration rate to the other parameters of the theory and,
in particular, the lattice spacing must be investigated. In this paper such an
investigation is carried out in the context of the two flavor lattice Schwinger
model.Comment: LaTeX, 37 pages including 18 figures. Added comments regarding power
law fitting in sect 7. Also, few changes were made to elucidate the content
in sect. 5.1 and 5.3. To appear in Phys. Rev.