30 research outputs found

    The zebrafish/tumor xenograft angiogenesis assay as a tool for screening anti-angiogenic miRNAs

    Get PDF
    The zebrafish/tumor xenograft angiogenesis assay is used to approach tumor angiogenesis, a pivotal step in cancer progression and target for anti-tumor therapies. Here, we evaluated whether the assay could allow the identification of microRNAs having an anti-angiogenic potential. For that, we transfected DU-145 prostate cancer cells with four microRNAs (miR-125a, miR-320, miR-487b, miR-492) responsive to both anti- and pro-angiogenic stimuli applied to human umbilical vein endothelial cells. After transfection, DU-145 cells were injected close to the developing subintestinal vessels of transgenic Tg(Kdrl:eGFP)s843 zebrafish embryos that express green fluorescent protein under the control of Kdrl promoter. At 72 h post-fertilization, we observed that green fluorescent protein–positive neo-vessels infiltrated the graft of DU-145 transfected with miR-125a, miR-320, and miR-487b. Vice versa, neo-vessel formation and tumor cell infiltration were inhibited when DU-145 cells transfected with miR-492 were used. These results indicated that the zebrafish/tumor xenograft assay was adequate to identify microRNAs able to suppress the release of angiogenic growth factors by angiogenic tumor cells

    A relevant long-term impact of the circulation of a potentially contaminated vaccine on the distribution of scrapie in Italy. Results from a retrospective cohort study

    Get PDF
    A sudden increase in the incidence of scrapie in Italy in 1997 was subsequently linked to the use of a potentially infected vaccine against contagious agalactia. The relative risk for the exposed farms ranged between 6 and 40. The aim of this study was to assess the long-term impact of exposure to the potentially scrapie-contaminated vaccine on the Italian classical scrapie epidemic. We carried out a retrospective cohort study, fitting mixed-effects Poisson regression models, dividing national geographic areas into exposure categories on the basis of the vaccine circulation levels. We took into account the sensitivity of the surveillance system applied in the different areas. The population attributable fraction (PAF) was used to assess the impact on the total population of farms associated with the effect of circulation of the vaccine. The provinces where the vaccine was more often sold were noted to have a higher level of disease when compared to those provinces where the vaccine was sold less often (incidence rate ratio [IRR]: 2.7; 95% confidence interval [CI]: 1.1-6.5). The population attributable fraction was high (68.4%). Standardization techniques allowed to account for the potential of geographical variability in the sensitivity of the Italian surveillance system. Although the number of the directly exposed farms was limited, an important long-term impact of the vaccine circulation could be quantified in terms of secondary outbreaks likely due to the exchange of animals from directly exposed flocks

    Mosquito-Borne Diseases and ‘One Health’: The Northwestern Italian Experience

    Get PDF
    In Italy, the surveillance of Mosquito-Borne Diseases (MBDs) is regulated by two national preparedness plans: (1) for West Nile and Usutu viruses, integrating human and veterinary surveillance in order to early detect viruses circulation and to quickly apply control measures aimed at reducing the risk of transmission through blood and blood components and (2) for Arbovirosis transmitted by Aedes mosquitoes, mainly Chikungunya, Dengue and Zika viruses, based on surveillance of both imported and autochthonous human cases. This chapter reports the results of the application of these National Plans in Northwestern Italy and their impact for human health. In detail, we present the coordinated activities enforced in Piemonte and Liguria Regions, as a good example of the ‘One Health approach’ to control MBDs and prevent human transmission

    Arcobacter spp. in raw milk from vending machines in Piedmont and occurrence of virulence genes in isolates

    Get PDF
    Arcobacter spp. has been recognized as an emerging foodborne pathogen and a hazard to human health. In the dairy chain, it has been isolated from different sources, nevertheless data on Arcobacter occurrence in raw milk provided by vending machines are few. This study aimed to identify potentially pathogenic Arcobacter spp. in raw milk intended for human consumption sold through vending machines located in Piedmont. In an 8-month period, 37 raw milk samples were collected from 24 dairy farms: 12 (32,4%) were collected directly in farm from bulk tank milk and 25 (67,6%) from vending machines. Eight (21,6%) out of the 37 milk samples and 7 (29,2%) out of the 24 dairy farms were positive for Arcobacter spp. by culture examination. Four (16%) out of the 25 samples from vending machines and 4 (33,3%) out of the 12 samples from bulk tank milk were positive. All 8 isolates were identified as A. butzleri both by MALDI-TOF MS and multiplex end-point PCR. According to the detection of virulence genes, a total of four Patho-types were highlighted: 5 isolates in P-type 1 and only one isolate for each of the P-types 2-3-4. A. butzleri isolates carrying encoding virulence factors genes were isolated from raw milk intended for human consumption: these findings strengthen the compulsory consumption after boiling as required by current legislation and suggest the need of enlarging the analytical investigations to other microorganisms not yet included in the food safety criteria

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis

    A genome-wide association study of anorexia nervosa suggests a risk locus implicated in dysregulated leptin signaling

    Get PDF
    J. Kaprio, A. Palotie, A. Raevuori-Helkamaa ja S. Ripatti ovat työryhmän Eating Disorders Working Group of the Psychiatric Genomics Consortium jäseniä. Erratum in: Sci Rep. 2017 Aug 21;7(1):8379, doi: 10.1038/s41598-017-06409-3We conducted a genome-wide association study (GWAS) of anorexia nervosa (AN) using a stringently defined phenotype. Analysis of phenotypic variability led to the identification of a specific genetic risk factor that approached genome-wide significance (rs929626 in EBF1 (Early B-Cell Factor 1); P = 2.04 x 10(-7); OR = 0.7; 95% confidence interval (CI) = 0.61-0.8) with independent replication (P = 0.04), suggesting a variant-mediated dysregulation of leptin signaling may play a role in AN. Multiple SNPs in LD with the variant support the nominal association. This demonstrates that although the clinical and etiologic heterogeneity of AN is universally recognized, further careful sub-typing of cases may provide more precise genomic signals. In this study, through a refinement of the phenotype spectrum of AN, we present a replicable GWAS signal that is nominally associated with AN, highlighting a potentially important candidate locus for further investigation.Peer reviewe

    miR-29a and miR-30c negatively regulate DNMT 3a in cardiac ischemic tissues: implications for cardiac remodelling

    Get PDF
    Recent evidences indicate that epigenetic changes play an important role in the transcriptional reprogramming of gene expression that characterizes cardiac hypertrophy and failure and may dictate response to therapy. Several data demonstrate that microRNAs (miRNAs) play critical roles both in normal cardiac function and under pathological conditions. Here we assessed, in in vivo rat models of myocardial infarction (MI) and ischemia-reperfusion (IR), the relationship between two miRNAs (miR-29a and miR-30c) and de novo methyltransferase (DNMT3a) which, altering the chromatin accessibility for transcription factors, deeply impacts gene expression. We showed that the levels of members of miR-29 and miR- 30 families were down regulated in ischemic tissues whilst the protein levels of DNMT3a were increased, such a relation was not present in healthy tissues. Furthermore, by an in vitro assay, we demonstrated that both miRNAs are able to down regulate DNMT3a by directly interacting with DNMT3a 3’UTR and that miR-29a or miR-30c overexpression in the cardiac HL1 cell line causes decrease of DNMT3a enzyme both at the mRNA and protein levels. Our data, besides confirming the down regulation of the miR-29a and miR-30c in infarcted tissues, envisage a cross-talk between microRNAs and chromatin modifying enzymes suggesting a new mechanism that might generate the alterations of DNA methylation often observed in myocardial pathophysiology

    miR-29a and miR-30c negatively regulate DNMT 3a in cardiac ischemic tissues: implications for cardiac remodelling

    No full text
    Recent evidences indicate that epigenetic changes play an important rolein the transcriptional reprogramming of gene expression that characterizescardiac hypertrophy and failure and may dictate response to therapy.Several data demonstrate that microRNAs (miRNAs) play critical rolesboth in normal cardiac function and under pathological conditions. Herewe assessed, in in vivo rat models of myocardial infarction (MI) andischemia-reperfusion (IR), the relationship between two miRNAs (miR-29aand miR-30c) and de novo methyltransferase (DNMT3a) which, alteringthe chromatin accessibility for transcription factors, deeply impacts geneexpression. We showed that the levels of members of miR-29 and miR30 families were down regulated in ischemic tissues whilst the proteinlevels of DNMT3a were increased, such a relation was not present inhealthy tissues. Furthermore, by an in vitro assay, we demonstrated thatboth miRNAs are able to down regulate DNMT3a by directly interactingwith DNMT3a 3’UTR and that miR-29a or miR-30c overexpression in thecardiac HL1 cell line causes decrease of DNMT3a enzyme both at themRNA and protein levels. Our data, besides confirming the down regulationof the miR-29a and miR-30c in infarcted tissues, envisage a cross-talkbetween microRNAs and chromatin modifying enzymes suggesting a newmechanism that might generate the alterations of DNA methylation oftenobserved in myocardial pathophysiology

    Evaluation of the European Union monitoring programme on the prevalence of Listeria monocytogenes (Decision 2010/678/EU) in Turin, Italy

    Get PDF
    Listeria monocytogenes is a ubiquitous bacterium, widely distributed in the environment; morover, its ability to survive at low temperatures and form protective biofilms makes it colonise and persist in food processing plants. Epidemiological data provided by EFSA in 2009 show that ready-to-eat (RTE) food – in particular, soft and semi-soft cheese, and fishery and meat products subjected to heat treatment –represents the most likely contaminated foodstuff. For this reason, the European Commission has developed (Dec. 2010/678/EU) a monitoring plan designed to evaluate the prevalence of L. monocytogenes in these products. The programme, developed in detail with reference to each member state, involved, among others, the city of Turin and has been set out from June to December 2011. The aim of this paper is to report the results obtained in the city of Turin. In total, 160 samples were analysed; only samples of smoked fish were found to be positive, while the pathogen was absent in cheese and meat products
    corecore