50 research outputs found

    Dopamine D3 Receptors Inhibit Hippocampal Gamma Oscillations by Disturbing CA3 Pyramidal Cell Firing Synchrony

    Get PDF
    Cortical gamma oscillations are associated with cognitive processes and are altered in several neuropsychiatric conditions such as schizophrenia and Alzheimer’s disease. Since dopamine D3 receptors are possible targets in treatment of these conditions, it is of great importance to understand their role in modulation of gamma oscillations. The effect of D3 receptors on gamma oscillations and the underlying cellular mechanisms were investigated by extracellular local field potential and simultaneous intracellular sharp micro-electrode recordings in the CA3 region of the hippocampus in vitro. D3 receptors decreased the power and broadened the bandwidth of gamma oscillations induced by acetylcholine or kainate. Blockade of the D3 receptors resulted in faster synchronization of the oscillations, suggesting that endogenous dopamine in the hippocampus slows down the dynamics of gamma oscillations by activation of D3 receptors. Investigating the underlying cellular mechanisms for these effects showed that D3 receptor activation decreased the rate of action potentials (APs) during gamma oscillations and reduced the precision of the AP phase coupling to the gamma cycle in CA3 pyramidal cells. The results may offer an explanation how selective activation of D3 receptors may impair cognition and how, in converse, D3 antagonists may exert pro-cognitive and antipsychotic effects

    Efflux transport of serum amyloid P component at the blood-brain barrier

    No full text
    Serum amyloid P component (SAP), a member of the innate immune system, does not penetrate the brain in physiological conditions; however, SAP is a stabilizing component of the amyloid plaques in neurodegenerative diseases. We investigated the cerebrovascular transport of human SAP in animal experiments and in culture blood-brain barrier (BBB) models. After intravenous injection, no SAP could be detected by immunohistochemistry or ELISA in healthy rat brains. Salmonella typhimurium lipopolysaccharide injection increased BBB permeability for SAP and the number of cerebral vessels labeled with fluorescein isothiocyanate (FITC)-SAP in mice. Furthermore, when SAP was injected to the rat hippocampus, a time-dependent decrease in brain concentration was seen demonstrating a rapid SAP efflux transport in vivo. A temperature-dependent bidirectional transport of FITC-SAP was observed in rat brain endothelial monolayers. The permeability coefficient for FITC-SAP was significantly higher in abluminal to luminal (brain to blood) than in the opposite direction. The luminal release of FITC-SAP from loaded endothelial cells was also significantly higher than the abluminal one. Our data indicate the presence of BBB efflux transport mechanisms protecting the brain from SAP penetration. Damaged BBB integrity due to pathological insults may increase brain SAP concentration contributing to development of neurodegenerative diseases
    corecore